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Abstract

In order to overcome the restricts of linear discriminant analysis (LDA), such as multivariate Normal distributed classes with equal

covariance matrix but different means and the single-cluster structure in each class, subclass discriminant analysis (SDA) is proposed

recently. In this paper the kernel SDA is presented, called KSDA. Moreover, we reformulate SDA so as to avoid the complicated

derivation in the feature space. The encouraging experimental results on eight UCI data sets demonstrate the efficiency of our method.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Linear discriminant analysis (LDA) is a popular method
for linear dimensionality reduction, which maximizes
between-class scatter and minimizes within-class scatter.
However, LDA is optimal only in the case that all the
classes are generated from underlying multivariate Normal
distributions of common covariance matrix but different
means and each class is expressed by a single cluster [4,12],
therefore LDA cannot give desired results for multimodally
distributed data sets, such as face recognition [5], radar
automatic target recognition [3] and so on. In order to
overcome the limitations of LDA, recently Zhu and
Martinez [12] propose subclass discriminant analysis
(SDA). Just as its name implies, SDA divides each class
into suitable subclasses so as to approximate the under-
lying distribution with mixture of Gaussians and then
performs LDA among these subclasses, moreover, the
authors also employ a stability criteria [8] to determine the
optimal subclass divisions. In this letter we develop SDA
into kernel SDA (KSDA) in the feature space, which can
result in a better subspace for the classification task since a
nonlinear clustering technique can find the underlying

subclasses more exactly in the feature space and nonlinear
LDA [5] can provide a nonlinear discriminant hyperplane.
Furthermore, a reformulation of SDA is given to avoid the
complicated derivation in the feature space.

2. Subclass discriminant analysis

In SDA, a new between-subclass scatter matrix is defined

S
ðbÞ
SDA ¼

XC�1
i¼1

XHi

j¼1

XC

k¼iþ1

XHk

l¼1

pijpklðmij � mklÞðmij � mklÞ
T, (1)

where C is the number of data classes, Hi the number of
subclass divisions in class i, n the total number of all
samples, nij the number of the jth subclass in class i, pij ¼

nij

�
n and mij are the prior and mean of the jth subclass in

class i.
In order to determine the optimal subclass divisions, the

authors propose a discriminant stability criteria [12,8],
which can evaluate whether LDA works

G ¼
Xm

i¼1

Xi

j¼1

ðuT
j wiÞ

2, (2)

where wi is the i eigenvector of between-subclass scatter
matrix S

ðbÞ
SDA and uj the jth eigenvector of the covariance

matrix of the data [12] (which is defined as
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S
ðmÞ
SDA ¼

Pn
i¼1ðxi � mÞðxi � mÞT, m is the global mean),

morankðS
ðbÞ
SDAÞ. The smaller the value of cost function

(2), the better SDA can work with the current subclass
divisions.

Since SDA is just LDA when Hi ¼ 1 for i ¼ 1; 2; . . . ;C,
LDA can be regarded as a special case of SDA. From (1),
we know that rankðS

ðbÞ
SDAÞpminðH � 1; pÞ, where H ¼PC

i¼1Hi is the total number of subclasses and p the
dimensionality of the range of the covariance matrix.
Therefore, SDA can also solve the problem posed by the
deficiency of the rank of the ordinary between-class scatter
matrix, which has been proved by the example in [12].

3. Kernel SDA

In this section, we present a nonlinear extension of SDA
based on kernel functions, KSDA. The main idea of the
kernel method is that without knowing the nonlinear
feature mapping explicitly, we can work on the feature
space through kernel functions, as long as the problem
formulation depends only on the inner products bet-
ween data points. This is based on the fact that for any
kernel function k satisfying Mercer’s condition [3] there
exists a mapping F such that hFðxÞ;FðyÞi ¼ kðx; yÞ, where
h; i is an inner product in the feature space F transformed
by F.

We apply the kernel method to perform SDA in the
feature space instead of the original input space. Given a
kernel function k, let F be a mapping satisfying (3). So
S
ðbÞ
KSDA and S

ðmÞ
KSDA in the feature space F can be expressed

as

S
ðbÞ
KSDA ¼

XC�1
i¼1

XHi

j¼1

XC

k¼iþ1

XHk

l¼1

pijpklðFij � FklÞðFij � FklÞ
T, (3)

S
ðmÞ
KSDA ¼

Xn

i¼1

ðFi � FÞðFi � FÞT, (4)

where Fij indicates the mean vector of jth subclass of ith
class, F is the global mean.

Similar to SDA, KSDA maximizes jVTS
ðbÞ
KSDAVj=

jVTS
ðmÞ
KSDAVj to find a transformation matrix V, the

columns of which are the eigenvectors corresponding to
the rpminðH � 1; pÞ largest eigenvalues of

S
ðbÞ
KSDAV ¼ lS

ðmÞ
KSDAV. (5)

Let the transformation matrix V be represented as

V ¼ Ua, (6)

where U ¼ ½F1; . . . ;Fn�, a ¼ ½a1; . . . ; ar�.
Usually one substitutes (3), (4), and (6) into (5) to obtain

the equation represented by the kernel Gram matrix;
however, the whole derivation procedures and representa-
tions of kernel scatter matrices are complicated and not
intuitive [1]. Therefore, in order to simplify it we will
give a new representation of SDA based on the following

scatter matrices

S
ðbÞ
SDA ¼ XD

ðbÞ
SDAX

T, (7)

S
ðmÞ
SDA ¼ XD

ðmÞ
SDAX

T, (8)

where

D
ðbÞ
SDAði;jÞ ¼

ðn� nkÞ=ðn2 � nklÞ if zi ¼ zj ¼ Ckl

0 if ziazj but yi ¼ yj ;

�1=n2 if yiayj ;

8>><
>>: (9)

D
ðmÞ
SDAði;jÞ ¼

1� 1=n if xi ¼ xj ;

�1=n else;

(
(10)

where X ¼ ½x1; . . . ;xn�, yi 2 ½1;C� is the class label of the
sample xi, nk ¼

PHk

l¼1nkl , Ckl indicates the lth subclass of
kth class, zi denotes the subclass which xi belongs to.
If SDA is transformed into the feature space, (7) and (8)

can be modified as

S
ðbÞ
KSDA ¼ UD

ðbÞ
KSDAUT, (11)

S
ðmÞ
KSDA ¼ UD

ðmÞ
KSDAUT. (12)

Substituting (6), (11), and (12), into (5), we obtain

UD
ðbÞ
KSDAUTUa ¼ lUD

ðmÞ
KSDAUTUa. (13)

Then multiplying (13) by UT from the left-hand side, we
have

KD
ðbÞ
KSDAKa ¼ lKDðmÞKSDAKa, (14)

where K 2 Rn�n is the kernel Gram matrix. Compared with
traditional forms of GDA [6], the new reformulation of
KSDA is more concise and easy to operate. Note that
D
ðbÞ
KSDA and D

ðmÞ
KSDA should reflect the relations of samples in

the feature space, therefore, the division of subclasses has
to be obtained by kernel clustering techniques. In this
paper we use the kernel k-means method [10]. In addition,
the stable criterion should also be reformulated in the
feature space. Although the kernel scatter matrices may be
of unknown dimensionalities, we can calculate the eigen-
vectors corresponding to the first largest eigenvalues of
them using the kernel Gram matrix. The details can be
referred to [9].

4. Experimental results

We demonstrate that our proposed method KSDA is an
effective nonlinear extension of SDA by comparing the
classification performances of KSDA and other kernel-
based nonlinear discriminant analysis algorithms as well as
GDA [1], Kernel direct LDA (KDDA) [7], complete kernel
Fisher discriminant analysis (CKFD) [11] and kernel
principal component analysis (KPCA) [10]. Eight data sets
collected from UCI machine learning repository [2] and the
ETH-80 database [6] were used, all of which were centered
and normalized to a distribution with zero mean and unit
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