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a b s t r a c t

Generative topographic mapping (GTM) provides a flexible statistical model for unsupervised data

inspection and topographic mapping. Since it yields to an explicit mapping of a low-dimensional latent

space to the observation space and an explicit formula for a constrained Gaussian mixture model

induced thereof, it offers diverse functionalities including clustering, dimensionality reduction,

topographic mapping, and the like. However, it shares the property of most unsupervised tools that

noise in the data cannot be recognized as such and, in consequence, is visualized in the map. The

framework of visualization based on auxiliary information and, more specifically, the framework of

learning metrics as introduced in [14,21] constitutes an elegant way to shape the metric according to

auxiliary information at hand such that only those aspects are displayed in distance-based approaches

which are relevant for a given classification task. Here we introduce the concept of relevance learning

into GTM such that the metric is shaped according to auxiliary class labels. Relying on the prototype-

based nature of GTM, efficient realizations of this paradigm are developed and compared on a couple of

benchmarks to state-of-the-art supervised dimensionality reduction techniques.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Generative topographic mapping (GTM) has been introduced
as a generative statistical model corresponding to the classical
self-organizing map for unsupervised data inspection and topo-
graphic mapping [1]. An explicit statistical model has the benefit
of great flexibility and easy adaptability to complex situations by
means of appropriate statistical assumptions. Further, by offering
an explicit mapping of latent space to observation space and a
constrained Gaussian mixture model based thereof, GTM offers
diverse functionality including visualization, clustering, topo-
graphic mapping, and various forms of data inspection. Like
standard unsupervised machine learning and data inspection
methods, however, GTM shares the garbage in - garbage out
problem: the information inherent in the data is displayed
independent of the specific user intention. Hence, if ‘garbage’ is
present in the data, this noise is presented to the user since the
statistical model has no way to identify the noise as such.

The domain of data visualization by means of dimensionality
reduction techniques constitutes a matured field of research, many
powerful nonlinear reduction techniques as well as a Matlab imple-
mentation being readily available, see e.g. [27,28,16,35,12,4,22,36,26].
However, researchers in the community start to appreciate that the
inherently ill-posed problem of unsupervised data visualization and

dimensionality reduction has to be shaped according to the user’s
needs to arrive at optimum results. This is particularly pronounced for
real-life data sets which frequently do not allow a widely loss-free
embedding into low dimensionality. Therefore, it has to be specified
which parts of the available information should be preserved while
embedding.

On the one hand, formal evaluation measures have been
developed which allow an explicit formulation and evaluation
based on the desired result, see e.g. [31–33,17]. On the other
hand, researchers start to develop methods which can take
auxiliary information into account. This way, the user can specify
which information in the data is interesting for the current
situation at hand by means of e.g. labeled data.

There exist a few classical mechanisms which take class
labeling into account to reduce the data dimensionality: Feature
selection constitutes one specific type of dimensionality reduc-
tion. Feature selection constitutes a well investigated research
topic with numerous proposals based on general principles such
as information theory or dedicated approaches developed for
specific classifiers; see e.g. [13] for an overview. However, this
way, the dimensionality reduction is restricted to very simple
projections to coordinate axes.

More variable albeit still linear projection methods are in the
focus of several classical discriminative dimensionality reduction
tools: Fisher’s linear discriminant analysis (LDA) projects data
such that within class distances are minimized while between
class distances are maximized. One important restriction of LDA is
given by the fact that, this way, a meaningful projection to
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dimensionality at most c�1, c being the number of classes, can be
obtained. Hence, for two class problems only a linear visualization
is found. Partial least squares regression (PLS) constitutes another
classical method which objective is to maximize the covariance of
the projected data and the given auxiliary information. It is also
suited for situations where data dimensionality is larger than the
number of data points; in such cases a linear projection is often
sufficient and the problem is to find good regularizations to adjust
the parameters accordingly. Informed projection [9] extends
principal component analysis (PCA) to also minimize the sum
squared error of data projections and the mean value of given
classes, this way achieving a compromise of dimensionality
reduction and clustering in the projection space. Another techni-
que relies on metric learning according to auxiliary class informa-
tion. For a metric which corresponds to a global linear matrix
transform to low dimensionality this results in a linear discrimi-
native projection of data, as proposed e.g. in [11,7].

Modern techniques extend these settings to general nonlinear
projection of data into low dimensionality such that the given
auxiliary information is taken into account. One way to extend
linear approaches to nonlinear settings is offered by kernelization.
This incorporates an implicit nonlinear mapping to a high-
dimensional feature space together with the linear low-dimen-
sional mapping. It can be used for every linear approach which
relies on dot products in the feature space only such that an
efficient computation is possible, such as several variants of
kernel LDA [18,3]. However, it is not clear how to choose the
kernel since its form severely influences the final shape of the
visualization. In addition, the method has quadratic complexity
with respect to the number of data due to its dependency on the
full Gram matrix.

Another principled way to extend dimensionality reduction to
auxiliary information is offered by an adaptation of the under-
lying metric which measures similarity in the original data space,
see e.g., [6,34]. The principle of learning metrics has been
introduced in [20,21]: the standard Riemanian metric of the given
data manifold is substituted by a form which measures the
information of the data for the given classification task. The Fisher
information matrix induces the local structure of this metric and
it can be expanded globally in terms of path integrals. This metric
is integrated into self-organizing maps (SOM), multidimensional
scaling (MDS), and a recent information theoretic model for data
visualization which directly relies on the metric in the data
space [20,21,33]. A drawback of the proposed method is its high
computational complexity due to the dependency of the metric
on path integrals or approximations thereof. A slightly different
approach is taken in [10]: Instead of learning the metric, an ad
hoc adaptation is used which also takes given class labeling into
account. The corresponding metric induces a k-nearest neighbor
graph which is shaped according to the given auxiliary informa-
tion. This can directly be integrated into a supervised version of
Isomap. The principle of discriminative visualization by means of
a change of the metric is considered in more generality in the
approach [8]. Here, a metric induced by prototype-based matrix
adaptation as introduced e.g. in [24,25] is integrated in several
popular visualization schemes including Isomap, manifold chart-
ing, locally linear embedding, etc.

Alternative approaches to incorporate auxiliary information
modify the cost function of dimensionality reduction tools to
include the given class information. The approaches introduced
in [15,19] can both be understood as extensions of stochastic
neighbor embedding (SNE). SNE tries to minimize the deviation of
the distribution of data induced by pairwise distances in the
original data space and projection space, respectively. Parametric
embedding (PE) substitutes these distributions by conditional
probabilities of classes, given a data point, this way mapping

both, data points and class centers at the same time. For this
procedure, however, an assignment of data to unimodal class
centers needs to be known in advance. Multiple relational
embedding (MRE) incorporates several dissimilarity structures
in the data space induced by labeling, for example, into one latent
space representation. For this purpose, the difference of the
distribution of each dissimilarity matrix and the distribution of
an appropriate transform of the latent space are accumulated,
whereby the transform is adapted during training according to
the given task. The weighting of the single components is taken
according to the task at hand, whereby the authors report an only
mild influence of the weighting on the final outcome. It is not
clear, however, how to pick the form of the transformation to take
into account multimodal classes.

Colored maximum variance unfolding (MVU) incorporates
auxiliary information into MVU by substituting the raw data
which is unfolded in MVU by the combination of the data and the
covariance matrix induced by the given auxiliary information.
This way, differences which should be emphasized in the visua-
lization are weighted by the differences given by the prior
labeling. Like MVU, however, the method depends on the full
Gram matrix and is computationally demanding, such that
approximations have to be used.

These approaches constitute promising candidates which
emphasize the relevance of discriminative nonlinear dimension-
ality reduction. Only few of these methods allow an easy exten-
sion to new data points or approximate inverse mappings.
Further, most methods suffer from high computational costs
which make them infeasible for large data sets.

In this contribution, we extend GTM to the principle of
learning metrics by combining the technique of relevance learn-
ing as introduced in supervised prototype-based classification
schemes and the prototype-based unsupervised representation of
data as provided by GTM. We propose two different ways to adapt
the relevance terms which rely on different cost functions con-
nected to prototype-based classification of data. Unlike [2], where
a separate supervised model is trained to arrive at appropriate
metrics for unsupervised data visualization, we can directly
integrate the metric adaptation step into GTM due to the proto-
type-based nature of GTM. We test the ability of the model to
visualize and cluster given data sets on a couple of benchmarks. It
turns out that, this way, an efficient and flexible discriminative
data mining and visualization technique arises.

2. The generative topographic mapping

The GTM as introduced in [1] models data xARD by means of a
mixture of Gaussians which is induced by a lattice of points w in a
low-dimensional latent space which can be used for visualization.
The lattice points are mapped via w/t¼ yðw,WÞ to the data
space, where the function is parameterized by W; one can, for
example, pick a generalized linear regression model based on
Gaussian base functions

y : w/FðwÞ �W ð1Þ

where the base functions F are equally spaced Gaussians with
variance s�1. Every latent point induces a Gaussian

pðxjw,W,bÞ ¼
b

2p

� �D=2

exp �
b
2
Jx�yðw,WÞJ2

� �
ð2Þ

with variance b�1, which gives the data distribution as mixture of
K modes

pðxjW,bÞ ¼
XK

k ¼ 1

pðwkÞpðxjwk,W,bÞ ð3Þ
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