Neurocomputing 74 (2011) 1372-1381

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Integrating feature maps and competitive layer architectures for
motion segmentation

Jan Steffen ?, Michael Pardowitz *?, Jochen J. Steil ®, Helge Ritter >*

2 Neuroinformatics Group, Faculty of Technology, Bielefeld University, Germany
b Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld University, Germany

ARTICLE INFO ABSTRACT

Available online 21 February 2011 We present a generic approach to integrate feature maps with a competitive layer architecture to
enable segmentation by a competitive neural dynamics specified in terms of the latent space mappings
constructed by the feature maps. We demonstrate the underlying ideas for the case of motion
segmentation, using a system that employs Unsupervised Kernel Regression (UKR) for the creation of
the feature maps, and the Competitive Layer Model (CLM) for the competitive layer architecture. The
UKR feature maps hold learned representations of a set of candidate motions and the CLM dynamics,

working on features defined in the UKR domain, implements the segmentation of observed trajectory

Keywords:

Neural competition

Motion segmentation
Architecture

Structured manifolds
Unsupervised Kernel Regression

UKR " . data according to the competing candidates. We also demonstrate how the introduction of an
gg&lpetmve Layer Mode additional layer can provide the system with a parametrizable rejection mechanism for previously

unknown observations. The evaluation on trajectories describing four different letters yields improved
classification results compared to our previous, pure manifold approach.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

How can a neural system parse its complex, spatio-temporal
input into more modular units that are sufficiently likely to re-
occur to make them useful, yet specific enough to serve as
building blocks for useful representations to shape the interaction
behaviour of an agent with its environment?

Partial answers to this question have been found at various
representational levels, leading to ideas for the adaptive forma-
tion of feature detectors, linear approaches such as PCA and ICA,
non-linear models for creating topographic or dimension-reduced
mappings, to competitive models for the dynamic decomposition
of perceptual inputs into “Gestalt”-like entities motivated from
the phenomenon of perceptual grouping.

Each of these models alone can only cover part of the entire
parsing process towards meaningful high-level constituents.
While classical, sequential computational approaches have been
developed to a high level of sophistication for combining proces-
sing steps in a modular fashion into complex software systems, a
similar level is currently largely missing for the combination of
computations represented in a more parallel, “neural-style”
format.

* Corresponding author at: Neuroinformatics Group, Faculty of Technology,
Bielefeld University, Germany.
E-mail addresses: jsteil@cor-lab.uni-bielefeld.de (J.J. Steil),
helge@techfak.uni-bielefeld.de (H. Ritter).

0925-2312/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.neucom.2010.11.028

Advances along these lines will require to investigate generic
schemes for combining a number of more elementary processing
primitives into neurally motivated architectures, to explore their
computational properties and how these can be shaped and
connected with symbolic approaches in a problem-specific
manner [1].

The present paper aims to contribute to that challenge by
focusing on the task of motion segmentation for exploring the
combination of two major approaches so far studied only in
separation: (i) the creation of topology-preserving maps for
creating compact, dimension-reduced representations and (ii)
the use of a competitive and often layered dynamics utilizing a
stack of feature maps for the decomposition of a complex pattern
into more basic constituents by a Gestalt-like process.

We believe that the combination of the generic and by now
well-researched processing primitives of map formation and
dynamic pattern decomposition can be an important step
towards the realization of more powerful architectures diminish-
ing the gap between low-level input processing and the creation
of higher-level representations.

Both processing primitives, map formation and dynamic pat-
tern decomposition, could in principle be implemented by a
variety of existing approaches. Our specific choice is biased by
our own previous work, adopting Unsupervised Kernel Regression
(UKR) as a representative method well-rooted in a statistical
framework to create the map manifolds, and the Competitive
Layer Model (CLM) as mathematically well-analysed recurrent
network for the dynamic pattern decomposition step.


www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2010.11.028
mailto:helge@techfak.uni-bielefeld.de<!--AQ2-->
dx.doi.org/10.1016/j.neucom.2010.11.028

J. Steffen et al. /| Neurocomputing 74 (2011) 1372-1381 1373

With this point of departure, the plan of the paper is as
follows: Sections 2 and 3 will provide a brief sketch of the UKR
and CLM methods to make the paper more self-contained and to
highlight the key aspects of both approaches that we deem
synergistic for the proposed, integrated architecture. Section 4
then describes the architecture itself. Section 5 discusses how an
extension of the CLM enables the proposed architecture to reject
unrecognizable pattern elements. Section 6 introduces the data
set used for our experiments, which themselves are evaluated
in Section 7. Discussion and Conclusions are found in Section 8.

2. Unsupervised Kernel Regression (UKR)

Topology-preserving feature maps [2], originally motivated by
attempts to model the formation of dimension-reduced latent
variable representations in the brain, have stimulated the devel-
opment of a range of successor methods aiming to implement the
underlying key idea in computationally more efficient or statis-
tically more principled ways.

Unsupervised Kernel Regression (UKR) is a recent example,
introduced by Meinicke et al. [3,4] as the unsupervised counter-
part of the Nadaraya-Watson kernel regression estimator. While
a self-organizing map uses a set of “moveable pointers” to
connect its map (the “latent”) space with observation space
locations, UKR replaces each moveable pointer by a kernel-
weighted observation point. To make the resulting pointer move-
able again, each observation point’s kernel is now centred at a
moveable latent space location. Thereby, the optimization of the
mapping has now become the task of moving this set of pointers
(kernel centres) in the low-dimensional latent space; moreover, the
resulting mapping is no longer discretized but fully continuous.

More formally, given a discrete sample Y =(y;,...,Yy) € RIN
of d-dimensional observation points, the desired mapping f:
xeRI>yeR? from a low-dimensional, latent “map space” into
the observation space is realized by a superposition

Kg(X—X;)

f(x) = -7’5

x) ; Vis Ky—x;)
of kernels whose moveable centres (in the following denoted as
X=(X,...,Xy) € RN N denoting the size of the training set) are
located in latent space. In UKR, X={x;} now plays the role of the
regression parameters of the regression function and is treated as
a set of latent parameters of a set of observed data
Y=(¥-.-.¥N)E R*N and a corresponding functional relationship
y=f(x).

This distinguishes UKR from the usual kernel approaches,
which consider an optimization of linear kernel weights plus a
choice of a subset of kernel centres from observation points.

UKR training, i.e. finding optimal latent variables X, is realized
as gradient-based minimization of the reconstruction error
R(X) = (1/N)>>;ly;—f(x;; X)II2. Since the scaling of the x/s is only
relevant relative to the kernel bandwidth f, one can normalize
the latter to f=1.

Most notably, UKR can perform leave-one-out cross-validation
without additional computational cost during the gradient des-
cent [5]. In addition, it can easily be initialized with the results of
spectral embedding methods like Isomap [6] or LLE [7] in order to
improve its robustness against poor local minima.

By its construction, UKR shares with the “classical” self-
organizing map [2] the absence of a direct representation for
the inverse mapping x= f~'(y; X) from observation to latent
space. Here, too, UKR requires a “bestmatch search” to identify
the latent variable values that belong to an observation. For the
case of UKR, this requires to solve the continuous minimization
problem X = g(y: X) = argmin, lly—f(x; X)lI2 (cf. [3]).

In the original form, UKR is a purely unsupervised approach to
continuous manifold learning. In order to incorporate prior
knowledge about the structure of the training data, we introduced
a structured version of UKR training (e.g. [8]). With structured
UKR, it is possible to represent data with a temporal context, like
trajectories of hand positions, in a very easy and robust way. In
particular, due to the specific training of structured UKR, the order
of the represented time series of training observations y; is
reflected in their latent parameters Xx; and is captured by one
specific latent time dimension. In order to represent periodic
motions, we use the m-periodic kernel K (x;—x;; ) =exp[—1 ﬁ2
sinz(x,»—xj)]. For further details on UKR, refer to [3,4,8].

3. Competitive Layer Model (CLM)

With feature maps as a major generic processing unit in a
neural system, a natural next step is to utilize a collection of
feature maps to enable a structured decomposition of an observa-
tion into a set of “meaningful” constituents. A neurally plausible
way to achieve such segmentation is to assume competitive
neural dynamics, which have been investigated in several flavours
in recent years [9-14].

The Competitive Layer Model (CLM, introduced in [15]) imple-
ments this idea in the form of a topographically structured
activity competition among a stack of feature maps, leading to a
flexible capability of pattern decomposition resembling Gestalt
processes in perception [16,9,17]. Taking off from this basic
version, it has been implemented in several ways [18,19] and so
far investigated in a variety of contexts, ranging from image
segmentation and perceptual grouping (e.g. [20-23,17]) to robot
task learning [24,25].

These works so far have always used a stack of identical, and
prespecified feature maps, although the CLM algorithm itself is
not dependent on such a constraint. Before proceeding to the
novel contribution of the present paper, the combination of the
CLM decomposition approach with the data-driven construction
of its layer feature maps by the UKR method, we give a brief
sketch of the CLM approach.

A CLM consists of a set of layers (the feature maps), indexed by
«=1..L and each containing a fixed number of neurons. We
imagine this set as a vertical stack, denoting as “columns” the
vertically arranged L-tuples of neurons that belong to the same
lateral coordinate r in the stack, but to different layers « (see Fig. 1).

The activity of a neuron at position r within layer « is a non-
negative value denoted by x;, (not to be confused with the latent
variables x, introduced in the previous section and distinguish-
able in our notation only from the absence of the o index!). An
input pattern is a spatial activity pattern h, associated with a
(fixed) collection of feature vectors m, attached to the coordinate
locations r of the columns.

Within each column, its maximally responding neuron deter-
mines which layer is “assigned” by the CLM to the current input
activity h, at the column’s location.

To shape the neural dynamics to result in ‘“meaningful”
assignments of the input activities to layers (and thereby to
group them), the neuron responses x;, are subjected to three
different interactions (cf. Fig. 1):

The first two interactions connect only neurons within the
same column (“vertical” interactions):

e alinear excitation from inputs h, to all neurons x;, of the same
column at r, and

e an inhibitory interaction within the column at r trying to keep
the columnar activity sum ) X, proportional to the column’s
input h,.



Download English Version:

https://daneshyari.com/en/article/410858

Download Persian Version:

https://daneshyari.com/article/410858

Daneshyari.com


https://daneshyari.com/en/article/410858
https://daneshyari.com/article/410858
https://daneshyari.com

