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a b s t r a c t

The Maximal Discrepancy (MD) is a powerful statistical method, which has been proposed for model

selection and error estimation in classification problems. This approach is particularly attractive when

dealing with small sample problems, since it avoids the use of a separate validation set. Unfortunately,

the MD method requires a bounded loss function, which is usually avoided by most learning

algorithms, including the Support Vector Machine (SVM), because it gives rise to a non-convex

optimization problem. We derive in this work a new approach for rigorously applying the MD

technique to the error estimation of the SVM and, at the same time, preserving the original SVM

framework.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

We propose in this work a new method to upper bound the
generalization error of Support Vector Machines (SVMs) [1–3]
using a data-dependent bound, based on Maximal Discrepancy
(MD) [4]. Several data-dependent methods have been recently
proposed in the literature: they use different approaches based on
worst-case or empirical fat-shattering [5,6], bootstrap penal-
ties [7] and Rademacher or MD complexities [4,8–10], but their
practical application to the usual formulation of SVM is not
trivial. In particular, when adopting Rademacher or MD-based
approaches, one of the main problems lies in the fact that these
methods require the use of a Lipschitz and bounded loss function,
which is not the case for the conventional SVM. The last require-
ment, in fact, gives rise to a non-convex optimization problem, for
which some solutions have been proposed in the literature, but
they depart from the traditional SVM framework and require ad-
hoc learning procedures [11–16].

We propose to solve this issue through a new learning
procedure, which allows us to deal with a convex optimization
problem and, furthermore, to rigorously apply the MD method to
the SVM classifier. The price to pay for our approach is a slight
increase of the generalization error estimate, but the method can
be easily applied in practice.

Our scenario is a typical learning problem where a set of i.i.d.
patterns Dl ¼ fðx1,y1Þ, . . . ,ðxl,ylÞg is available, sampled from the
unknown distributions PðxÞ and PðyjxÞ, with xiARn and yiAY ¼
f�1,þ1g.

A prediction rule is a function f : Rn-Yf DR, chosen from a set
of functions F , whose empirical error (i.e. the error rate on the
dataset Dl) can be written as

nðf Þ ¼ 1

l

Xl

i ¼ 1

Lðf ðxiÞ,yiÞ, ð1Þ

where L : Yf � Y-½0,1� is a loss function that weights the mis-
predicted samples.1

A typical example is the following loss function, which assigns
a unit weight to misclassified samples and a zero value to
correctly classified ones:

LHðf ðxiÞ,yiÞ ¼
0 if yif ðxiÞ40,

1 if yif ðxiÞr0:

(
ð2Þ

Unfortunately, the use of a hard loss function makes the optimi-
zation problem intractable, therefore, a soft version is used
instead, which is Lipschitz continuous and can assume any value
in the range [0,1].

We propose to use the following soft loss function:

LSðf ðxiÞ,yiÞ ¼

0 if yif ðxiÞZ1,

ð1�yif ðxiÞÞ=2 if �1ryif ðxiÞr1,

1 if yif ðxiÞr�1:

8><
>: ð3Þ

Differently from other proposals [11,12,15], this loss function
assigns a weight of 1

2 to the samples that are exactly on the
separating surface and the extreme values 0 or 1 are assigned to
the patterns that lie outside the margin jyif ðxiÞjZ1. The value
given by Eq. (3) cannot be interpreted directly as a conditional
probability, which, in any case, cannot be unambiguously esti-
mated in sparse classifiers [18]; nevertheless, it is a real-valued
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indicator of the amount of misclassification and, furthermore, can
be used to upper bound the number of misclassified samples,
because LH r2LS.

In order to predict the generalization ability of the classifier,
we are interested in the estimation of the generalization error pðf Þ,
which is defined as

pðf Þ ¼ Eðx,yÞLðf ðxÞ,yÞ, ð4Þ

where Eðx,yÞ is the expectation with respect to the probability
distribution of the data x and the labels y. It is well known that
nðf Þ usually underestimates pðf Þ, but the last one cannot be
computed because the probability distribution generating the
data is unknown. Several well-known results in learning theory
(see, for example, [19]) show that a key quantity for estimating
the generalization ability of a classifier is the supremum of the
generalization bias with respect to the considered class of func-
tions F , supf AF ½pðf Þ�nðf Þ�. This is a random variable depending
on the data and F , for which the following relation is always true

pðf Þrnðf Þþ sup
gAF
½pðgÞ�nðgÞ�, ð5Þ

and which can be analyzed through the use of maximal
discrepancy.

In the following section we will describe the MD method and
in Section 3 we will summarize the SVM algorithm and the
critical issues that must be addressed for applying the MD
method to this classifier. In Section 4, we will detail our proce-
dure, which allows to apply the MD method to the SVM in a
rigorous way and, in Section 5, we will show some experimental
results on a well-known benchmarking classification problem.
Finally, in Section 6, we address some open problems related to
the looseness of the bound, which can be a starting point for
further research on this issue.

2. The Maximal Discrepancy of a classifier

Let us randomly split Dl in two halves and define the two
following empirical errors:

nð1Þðf Þ ¼ 2

l

Xl=2

i ¼ 1

Lðf ðxiÞ,yiÞ, ð6Þ

nð2Þðf Þ ¼ 2

l

Xl

i ¼ l=2þ1

Lðf ðxiÞ,yiÞ: ð7Þ

The Maximal Discrepancy is defined as

MD¼max
f AF
ðnð1Þðf Þ�nð2Þðf ÞÞ, ð8Þ

where F is the class of functions from which the classifier will be
selected.

The following theorem can be used to derive an upper-bound
of the generalization error in terms of MD [4,8]:

Theorem 1. Given a dataset Dl ¼ fðx1,y1Þ, . . . ,ðxl,ylÞg, where xiARn

and yiAY, i.i.d. with unknown distributions PðxÞ and PðyjxÞ, given a

class of functions F and a bounded loss function L : Yf � Y-½0,1�,
then

P sup
f AF
½pðf Þ�nðf Þ�ZMDþe

" #
r2exp

�2le2

9

� �
: ð9Þ

Proof. The proof is similar to those of Theorem 9 in [4] and
Theorem 8 in [8], in which the authors exploit the hard loss
function, and is mainly based on an application of McDiarmid’s
inequality [20]. By considering a ghost sample D0l ¼ fx

0
i,y
0
ig,

composed of l patterns, the following upper bound holds:

Eðx,yÞsup
f AF
½pðf Þ�nðf Þ� ¼ Eðx,yÞsup

f AF
fEðx0 ,y0 Þ½n0ðf Þ��nðf Þg ð10Þ

¼ Eðx,yÞsup
f AF
fEðx0 ,y0 Þ½n0ðf Þ�nðf Þ�g

rEðx,yÞEðx0 ,y0 Þ max
f AF
½n0ðf Þ�nðf Þ�g,

�
ð11Þ

where n0ðf Þ is the empirical error over the ghost set and
pðf Þ ¼ Eðx0 ,y0 Þ½n0ðf Þ�. We exploit the definition of empirical error
and, by defining Li ¼ Lðf ðxiÞ,yiÞ and L0i ¼ Lðf ðx0iÞ,y

0
iÞ, we have

Eðx,yÞEðx0 ,y0 Þ max
f AF
½n0ðf Þ�nðf Þ�

� �

¼ Eðx,yÞEðx0 ,y0 Þ max
f AF

1

l

Xl

i ¼ 1

L0i�
1

l

Xl

i ¼ 1

Li

" #( )

r
1

l
Eðx,yÞEðx0 ,y0 Þ max

f AF

Xl=2

i ¼ 1

ðL0i�LiÞ

" #( )
þ

þ
1

l
Eðx,yÞEðx0 ,y0 Þ max

f AF

Xl

i ¼ l=2þ1

ðL0i�LiÞ

2
4

3
5

8<
:

9=
;

¼
2

l
Eðx,yÞ max

f AF

Xl=2

i ¼ 1

ðL0i�LiÞ

" #( )
¼ Eðx,yÞfMDg: ð12Þ

Then, by considering Eqs. (10) and (12):

Eðx,yÞsup
f AF
½pðf Þ�nðf Þ�rEðx,yÞfMDg: ð13Þ

By applying McDiarmid’s inequality [20] to the first term of

Eq. (13):

P sup
f AF
½pðf Þ�nðf Þ�ZEðx,yÞsup

f AF
½pðf Þ�nðf Þ�þe

" #
rexp½�2le2�, ð14Þ

since the loss Lð�,�Þ is bounded. By combining Eqs. (13) and (14),

we obtain

P sup
f AF
½pðf Þ�nðf Þ�ZEðx,yÞMDþe

" #

rP sup
f AF
½pðf Þ�nðf Þ�ZEðx,yÞsup

f AF
½pðf Þ�nðf Þ�þe

" #
rexp½�2le2�:

ð15Þ

We are interested in evaluating the generalization error using

MD; then, we have

P sup
f AF
½pðf Þ�nðf Þ�ZMDþe

" #

rP sup
f AF
½pðf Þ�nðf Þ�ZEðx,yÞsup

f AF
½pðf Þ�nðf Þ�þ e

3

" #

þP Eðx,yÞsup
f AF
½pðf Þ�nðf Þ�ZMDþ

2e
3

" #
: ð16Þ

By considering Eq. (13), we have

P sup
f AF
½pðf Þ�nðf Þ�ZMDþe

" #

rP sup
f AF
½pðf Þ�nðf Þ�ZEðx,yÞsup

f AF
½pðf Þ�nðf Þ�þ e

3

" #

þP Eðx,yÞfMDgZMDþ
2e
3

� �
rexp

�2le2

9

� �
þexp

�2le2

9

� �

¼ 2exp
�2le2

9

� �
, ð17Þ
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