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a b s t r a c t

Derived from the traditional manifold learning algorithms, local discriminant analysis methods identify

the underlying submanifold structures while employing discriminative information for dimensionality

reduction. Mathematically, they can all be unified into a graph embedding framework with different

construction criteria. However, such learning algorithms are limited by the curse-of-dimensionality if

the original data lie on the high-dimensional manifold. Different from the existing algorithms, we

consider the discriminant embedding as a kernel analysis approach in the sample space, and a kernel-

view based discriminant method is proposed for the embedded feature extraction, where both PCA pre-

processing and the pruning of data can be avoided. Extensive experiments on the high-dimensional

data sets show the robustness and outstanding performance of our proposed method.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that many machine learning and data mining
problems deal with the high-dimensional data representation and
analysis. In the past few decades, numerous dimension reduction
and feature extraction methods have been devoted to find the
resultful feature representation of the original data. In the
literature, principal component analysis (PCA) [1] and linear
discriminant analysis (LDA) [2,3] have been the most popular
techniques. Moreover, they can be carried out in a reproducing
kernel Hilbert space (RKHS) by making use of the well-known
‘‘kernel trick’’ [4], and the kernel discriminant method and its
variants [5–7] are drawn in the recent years.

Different from the statistical feature extraction techniques that
consider the global Euclidean structure, the theoretical basis
of manifold learning methods, e.g., ISOMAP [8], LLE [9] and
Laplacian eigenmap (LE) [10], depends on the observation that
the high-dimensional data may reside on an intrinsic nonlinear
manifold with much low dimensionality. Particularly, locality
preserving projection (LPP) [11] is presented based on the LE
idea. In order to find the discriminative submanifold structures
embedded on the original data, some locally supervised learning

techniques [12–16] are proposed, in the light of the locality
preserving conception.

On the other hand, many real-world applications, such as
image retrieval and pattern recognition, handle the high-dimen-
sional data that bring the curse-of-dimensionality for the local
discriminant analysis techniques. Generally, the existing local
methods handle the high dimensionality of data in the following
two ways:

� Since the maximum margin criterion (MMC) has been success-
fully applied to classical LDA [17], it is employed to replace the
ratio discriminant formulation with the subtraction one. The
drawback of such an idea is that the computational expense
usually depends on the dimensionality of data and it is hard to
carry out if the original data lie on a high-dimensional
manifold. A simple solution to this problem is to resize the
data into a smaller size. Such an idea, however, would destroy
the integrity of the original data.
� By other means, PCA is usually used to reduce dimension

primarily in such environments. Though the PCA pre-proces-
sing step can be considered to generate a new coordinate
system, the local manifold structure cannot be preserved if a
pruning of PCA energy is adopted.

In view of this intrinsic limitation, we propose a kernel-view
based discriminant approach, namely KVDA, for embedded fea-
ture extraction of high-dimensional data. Different from other
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techniques, it is insensitive to the high dimensionality of data and
PCA stage is unnecessary. It is noticeable that though local
discriminative learning is conducted via a kernel approach in
our work, the original sample space is involved rather than
the RKHS.

The remainder of this paper is organized as follows. The
problem statement is given in Section 2. The proposed KVDA is
described in Section 3. A comprehensive set of comparison
experiments on feature extraction and classification is given
in Section 4, followed by the conclusion in Section 5. For
convenience, the important notations used in the paper are listed
in Table 1.

2. Problem statement

To discover the action on the data structure, the difference
between PCA and local manifold learning methods for dimension-
ality reduction is considered. Taking LPP for example, we show
the difference between PCA and LPP for the real data sets, namely,
Ionosphere and Monks3 [18], in Fig. 1, where the representation
of PCA and LPP for the data sets in the first two significant
dimensions is illustrated. Evidently, LPP tends to preserve the
local localities, while PCA makes the global distribution of data
maximum. In other words, PCA aims to disperse data in a total
statistical theory if some data energy is pruned in the reduced
subspace, which is contrary to the local ones. It implies that the
local structure of data may be destroyed in the predigested PCA
subspace.

In the literature, some works have affirmed that LDA can be
performed in PCA transformed space in theory [19], and no
discriminant power will be lost if the complete data energy is
kept. It is well known that the PCA measures the variance of data
via a covariance matrix which is equivalent to the total scatter St

in LDA. Differently, the local discriminant methods are designed
under the local graphs based discriminant criterion that have no
relationship with the St in general. To make the difference clear,
the learned subspaces of LDA and the local discriminant method
are illustrated in Fig. 2, and the results are computed based upon
nine different objects (the top row in Fig. 3) from the ALOI
database. In addition, it is noticeable that the most discriminative
information included in the range space of the between-class

scatter Sb can still be preserved if several principal components
are pruned in the PCA stage of LDA, while the discriminant space
of local methods can fill the PCA subspace. In other words,
pruning of principal components that is widely used in many
applications destroys the submanifold structure in the projected
subspace. In terms of this, it may be optimal if PCA stage can be
abandoned in the local manifold discrimination.

3. Embedded feature extraction under a kernel view

3.1. Kernel-view based discriminant approach

In order to depict the supervised manifold structure hidden in
high-dimensional data, two graphs, i.e., the intrinsic graph G and
the penalty graph Gp, are generally constructed. Suppose that
XARd�n denotes the data matrix consisting of n samples, S and Sp

are respectively the adjacency matrices of the intrinsic and
penalty graphs, their corresponding Laplacian matrices are indi-
cated by L and Lp. Without loss of generality, discriminant
embedding aims to find an optimal subspace, where the distances
of data pairs in G are shortened and the edges in Gp can be
enlarged, by optimizing the following objective function:

w� ¼ argmin
w

wT Mw

wT Mpw
¼ argmin

w

wT XLXT w

wT XLpXT w
: ð1Þ

Here, M and Mp indicate the intraclass and extraclass scatter
matrices, L and Lp are determined by L ¼ D �S and Lp ¼ Dp �Sp,
D and Dp are diagonal matrices, of which diagonal entries are
column (or row) sum of S and Sp as defined in the graph
embedding framework [12]. Then, the optimal w can be obtained
by solving a generalized eigenvalue decomposition problem,
Mw¼ lMpw.

Mathematically, the objective function can be optimized via
solving the equivalent problem:

W� ¼ argmin
W

trðWMWÞ ð2Þ

subject to

WT MpW ¼ I, ð3Þ

where I indicates the identity matrix. For the high-dimensional
data, the range space of Mp that covers the most discriminative
features is taken into account. For the sake of simplification,
assume that the adjacency weight of the connected intraclass and
extraclass edges are all set to be one. Then, the generalized
discriminant embedding can be regarded as a kernel approach
based on the following proposition [16].

Proposition 1. Given graph Gp with adjacency matrix SpARn�n and

Laplacian matrix LpARn�n, there exists another indicator matrix

L0pARn�Np constructed according to the Np elements that are equal to

‘‘1’’ in the upper (or lower) triangular matrix of Sp. That is, for each

‘‘1’’ in upper (or lower) triangular matrix of Sp, there is a correspond-

ing column in L0p as

0 . . .0
zfflfflffl}|fflfflffl{1,...,i�1

,1
i

, 0 . . .0
zfflfflffl}|fflfflffl{iþ1,...,j�1

,�1
j

,0 . . .0
zfflfflffl}|fflfflffl{jþ1,...,n

0
B@

1
CA

T

ð4Þ

Then, Lp can redefined as

Lp ¼ L0pL0Tp : ð5Þ

Let K be the inner product matrix XT XARn�n, Kp denote the
penalty kernel matrix L0Tp KL0pARNp�Np corresponding to the kernel
framework [20]. As a result, the original objective function can be

Table 1
Notations.

Notation Description

X Original data set

d Dimensionality of original samples

M, Mp Scatter matrix

S, Sp Adjacency matrix

a Discriminant coefficient

Kp Penalty kernel matrix

Np Amount of graph edges

t Rank of scatter matrix

M̂ Reduced scatter matrix

eM , eM p
Kernel scatter matrix

AT Transpose of matrix A

n Amount of samples

K Inner product kernel matrix

L, Lp Laplacian matrix

D,Dp ,S Diagonal matrix

Lp
0 Indicator matrix

W Projection matrix

r Desired features

I Identity matrix

L,G Eigenvalue matrix

V, H Eigenvector matrix

z Eigenvector
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