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Abstract

In this work, we analyze algorithms for adaptive filtering based on non-linear cost function of the error, which we named non-linear

even moment (NEM) algorithms. We assume that this non-linear function can be generally described in a Taylor series as a linear

combination of the even moments of the error. NEM is a generalization of the well-known least mean square (LMS). We study the NEM

convergence behavior and derive equations for misadjustment and convergence. We found a good approximation for the theoretical

results and we show that there are various combinations of the even moments which yields better results than the LMS as well as other

algorithms proposed in the literature.
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1. Introduction

In many signal processing applications using adaptive
filtering, there is a need of algorithms that yield small error,
fast convergence and low computational complexity.
Usually, these algorithms are analyzed under a framework
where a number of linearizations are carried out, so that
one can easily access both the convergence time and the
misadjustment error. Moreover, underlying these methods
are some assumptions about the statistics of the signals
under study. This yields important simplifications in the
analysis of the algorithm. However, those linearizations
and assumptions may oversimplify the problem or hide
important properties of the algorithms.

Among the adaptive filters, the least mean square

algorithm (LMS) of Widrow and Hoff [5] appears as one
of the most widely used. The LMS belongs to a class of
algorithms that can be designated as second order statistics

(SOS), in opposition to higher order statistics (HOS).

The use of SOS methods are sufficient when the signals
involved in the application are Gaussian distributed,
yielding a number of simplifications in the algorithm
analysis, as well as leading to computationally less
expensive methods.
Interestingly, probably due to the increase in the

computational power in the last decades, HOS methods
have drawn more attention of the research community.
Indeed, instead of dealing only with the signal’s power
(i.e., SOS), HOS allows access to the information contained
in all moments of the signal [6], yielding therefore a better
approximation of the actual distribution of the signal under
study. As a result, one can expect that algorithms designed
under the HOS framework behave more efficiently.
An interesting idea would be to explore the HOS of the

error, such as carried out in the works of Walach and
Widrow [7], Chambers et al. [1] or Erdogmus et al. [3].
There is an interesting property which is: the mean of the
error raised to even powers is a convex function of the
weight vector. This can be interpreted as the error cannot
have local minima [4]. Here we generalize the work of
Chambers et al. [1], that proposed a weighted sum of the
moments of order two and four. The idea behind the sum
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of errors is that one can have the good behavior of the
second order moment in steady state allied to the fast
convergence of higher order even moments, as shown in
Fig. 1.

Moreover, it is worth saying that in the study of
convergence time or misadjustment of adaptive algorithms,
one analyzes their behavior near the optimum solution,
which yields interesting linearizations [2,7]. This policy
makes sense in the case of misadjustment, which should be
studied when the learning reaches steady state. However, it
may lead to large errors in the case of convergence time, as
it is an indication of how fast the algorithm has started the
learning. Thus, we also propose a new way of evaluating
the convergence time here, by analyzing the algorithm
behavior in the beginning of the learning task.

2. The method

Let us consider that we observe a given signal dj and a
number of others, which can be included into a vector
Xj ¼ ½xj;1 xj;2 � � � xj;M �, called reference input. Moreover,
let us define dj ¼ sj þ nj , where sj is the signal we want to
extract and nj is the noise. Let us also assume that nj is
statistically independent of sj and Xj, whereas all these
variables have probability distributions which are not
necessarily Gaussian. Our aim is to estimate sj , after
optimally calculating the weight Wj ¼ ½wj;1 wj;2 � � � wj;M �

and the current error �j ¼ dj � yj, where the output signal
is given by yj ¼WT

j Xj. We assume that the weight vector
coefficients are statistically independent of the input vector.

In this optimization, the Widrow–Hoff algorithm uses
an instantaneous estimation of the gradient of E½�2j �.
However, our interest is to minimize a general cost function

zK ¼ f fE½��g. We will assume that f f�g is a even function
and therefore it can be rewritten in a Taylor series as a sum
of even moments of the error. Thus, we can write

zK ¼
XN

K¼1

aK ð2KÞ�1E½�2K
j �; ð1Þ

where aK is a scaling factor. The term 2K�1 was introduced
only for ease of manipulation.
Thus, the instantaneous gradient of (1), rðzK Þ ¼

�2ð
PN

K¼1aK�2K�1
j ÞXj, will lead to the following simple

update weight rule:

Wjþ1 ¼Wj þ 2m
XN

K¼1

aK�
2K�1
j

 !
Xj ; ð2Þ

where m is a learning constant, controlling the stability and
rate of convergence.

3. Adaptation analysis

The first task for analyzing the algorithm behavior
should be to check the conditions under which it converges
to the desired solution, and how it behaves until it reaches
steady state. This can be carried out by analyzing the
misadjustment error and the convergence time.
Let us first make a change of variable, by defining the

vector Vj ¼Wj �W�, where W� is the optimum solution,
i.e., sj ¼WT

�Xj. Thus, (2) becomes,

Vjþ1 ¼ Vj þ 2m
XN

K¼1

aK�
2K�1
j

 !
Xj : ð3Þ

More specifically, (3) can be rewritten in the form of a
binomial expansion as follows:

Vjþ1 ¼ Vj þ 2m
XN

K¼1

X2K�1

i¼0

aK

2K � 1

i

 !"

�ni
jð�X

T
j VjÞ

2K�1�i

#
Xj. ð4Þ

One can study the misadjustment, which is a measure of
how far the output differs from the ideal solution. The
misadjustment calculation can be performed in the
neighborhood of the optimal solution, i.e., Vj ! 0. Hence,
we can neglect the higher powers of Vj in (4). By
remembering that �j ¼ sj þ nj �WT

j Xj ¼ nj � VT
j Xj, we

have,

Vjþ1 ’ Vj

þ 2m
XN

K¼1

aKXjðn
2K�1
j � ð2K � 1Þn2K�2

j XT
j VjÞ

" #
, ð5Þ

where we made an approximation up to the second order.
Defining R ¼ E½XjX

T
j �, and recalling that Xj and nj

were assumed to be mutually independent, we can
study the behavior of Vj, by taking the expectations at
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Fig. 1. Here we show the behavior of four functions to illustrate the idea

of adding power functions. One is the usual square, another is the variable

to the fourth, and a third is a weighted sum of the previous two. One can

see that around zero the function has less variance in the case of x2, while

x4 has a large drop as it gets far from zero. The idea in this work is to use

the advantages of both, as shown in the third and fourth functions.
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