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A modified infomax algorithm for blind signal separation
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Abstract

We present a new algorithm to perform blind signal separation (BSS), which takes a trade-off between the ordinary gradient infomax

algorithm and the natural gradient infomax algorithm. Analyzing the algorithm, we show that desired equilibrium points are locally

stable by choosing appropriate score functions and step sizes. The algorithm provides better performance than the ordinary gradient

algorithm, and it is free from approximation error and the small-step-size restriction of the natural gradient algorithm. In simulations on

convolved mixtures, the algorithm provides much better performance than the other algorithms while requiring less computation.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The blind signal separation (BSS) problem is to find a
transform that recovers source signals from their mixtures
without knowing how the sources are mixed [13,19].
Although the term ‘blind’ means that no prior information
is available, many BSS algorithms rely on statistical
independence of source signals [5,8]. Only with this
statistical-independent assumption, BSS shows good per-
formance in many applications and it has received
extensive attention in signal and speech processing,
machine learning, and neuroscience communities.

Although many researchers have proposed algorithms to
perform BSS, a large number of these are batch-type with
prewhitened signals of instantaneous mixtures. In many
practical applications, however, all mixing data are not
given in advance, and outputs have to be immediately
provided for each input sample. In addition, batch-type
algorithms cannot be used for non-stationary environ-
ments. Furthermore, convolved mixtures of natural signals
which have correlation among time samples are often
addressed. For such practical applications, it is necessary

for BSS algorithms to have separation capability of
convolved mixtures with on-line adaptation even without
prewhitening. Unfortunately, the majority of algorithms
cannot handle these applications because they have been
developed to separate instantaneous mixtures or whitened
signals with batch-type processing [6,15,16,25,30].
As an approach to BSS without these difficulties, an

ordinary gradient algorithm for entropy maximization is
notable for its simple and biologically plausible formula-
tion [4,29]. However, the parameter space is not orthogonal
in the Riemannian manifold, which is usually encountered
in practical problems. In this case, the ordinary gradient
does not indicate the most efficient direction for a desired
solution, thereby causing a slow convergence. As a much
more efficient strategy, Amari et al. proposed the natural
gradient, which can consider the relationship between the
Riemannian manifold and the Euclidean manifold [1–3]. In
addition, Cardoso and Laheld independently proposed the
same, which they termed the relative gradient, and proved
that the gradient has the ‘equivariance property’ [7].
The ordinary gradient algorithm has a slow convergence

property in many practical problems and involves matrix
inversion which is computationally intensive. On the other
hand, the natural gradient algorithm is quite efficient and does
not involve the matrix inversion. However, it still requires
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additional computation such as convolution for convolved
mixtures and matrix multiplication for instantaneous mix-
tures. Moreover, the natural gradient algorithm has a serious
problem in dealing with convolved mixtures. The exact form
of the natural gradient algorithm for BSS of convolved
mixtures involves non-causal terms and requires very intensive
computation. To remove the non-causal terms and reduce the
computational complexity, it is necessary to approximate the
algorithm on the assumption that the updating amounts of
filter coefficients are very small [3,8]. To fulfill the assumption,
the step size should be very small, which results in slow
convergence. In addition, the approximation may induce
errors in updating adaptive filter coefficients.

In an attempt to obtain better performance than the
ordinary gradient algorithm and overcome the disadvan-
tages of the natural gradient algorithm, we present a new
modification of the algorithms. In the modification, the
algorithm provides a compromise between the ordinary
gradient algorithm and the natural gradient algorithm. The
algorithm maintains spatial and temporal independence,
and requires less computation than the other algorithms.
Simulation results demonstrate the efficiency of the
proposed algorithm. For theoretical support, local stability
on desired solutions of the algorithm is proven.

2. Conventional algorithms for BSS

The goal of BSS is to separate source signals from
linear mixtures of unknown independent source signals
[13,19,20]. Let us consider a set of unknown sources,
sðnÞ ¼ ½s1ðnÞ; s2ðnÞ; . . . ; sM ðnÞ�

T, such that the components
fsiðnÞ; i ¼ 1; 2; . . . ;Mg are zero-mean and mutually inde-
pendent. Assume that a set of observations, xðnÞ ¼

½x1ðnÞ;x2ðnÞ; . . . ;xMðnÞ�
T, is obtained as a linear combina-

tion of the unknown sources. Then, the observations xðnÞ
can be expressed as

xðnÞ ¼ AsðnÞ, (2.1)

where A is an unknown full rank mixing matrix. The task is
to find an unmixing matrix WðnÞ such that estimated
signals uðnÞ are the original sources up to permutation and
scaling, where

uðnÞ ¼WðnÞxðnÞ. (2.2)

Bell and Sejnowski proposed training the unmixing matrix
WðnÞ by maximizing the entropy of y ¼ gðuÞ, where g is a
nonlinear function approximating the cumulative density
function (cdf) of the sources [4]. The ordinary gradient for
maximizing the entropy leads to the following learning rule
called as the infomax algorithm:

DWðnÞ / ½WTðnÞ��1 � jðuðnÞÞxTðnÞ,

jðuðnÞÞ ¼ �
qp1ðu1ðnÞÞ=qu1ðnÞ

p1ðu1ðnÞÞ
; . . . ;

�
�

qpMðuM ðnÞÞ=quMðnÞ

pM ðuMðnÞÞ

�T
, ð2:3Þ

where jð�Þ is called a score function and piðuiðnÞÞ denotes
the probability density function (pdf) of uiðnÞ.
A much more efficient way to learn the unmixing matrix

is to follow the natural gradient [2,7,9]. For instantaneous
mixtures, the natural gradient rescales the ordinary
gradient by post-multiplying it with WTðnÞWðnÞ, giving

DWðnÞ / ½I� jðuðnÞÞuTðnÞ�WðnÞ. (2.4)

It is known that the natural gradient finds the most efficient
direction for updating the unmixing matrix when the
parameter space belongs to the Riemannian manifold.
Moreover, the gradient has the equivariance property
such that its convergence property is independent of the
mixing characteristics [7]. Because the natural gradient
algorithm does not involve computationally intensive
matrix inversion, it requires less computation than the
ordinary gradient algorithm.

3. A modified infomax algorithm

Let us consider a ‘modified’ infomax algorithm as
follows:

DWðnÞ / I� jðuðnÞÞuTðnÞ. (3.1)

Comparing Eq. (3.1) with Eqs. (2.3) and (2.4), we can easily
see that the algorithm takes a compromise between the
ordinary gradient algorithm and the natural gradient
algorithm.
Here, the dynamic property of the algorithm is investi-

gated with a cost function JðWÞ, which derives the
conventional infomax algorithms

JðWÞ ¼ � log j detðWÞj �
XM
i¼1

logðpiðuiÞÞ. (3.2)

In an attempt to check if the cost function is a Lyapunov
function, which rigorously proves the convergence of the
corresponding algorithm, we derive

dJðWÞ

dn
¼
XM
i¼1

XM
j¼1

qJ

qwij

dwij

dn
. (3.3)

Since qJ=qW ¼ �W�T þ jðuÞxT, the modified infomax
algorithm can be represented as

dW

dn
¼ Z½I� jðuÞuT� ¼ �Z

qJ

qW
WT, (3.4)

where Z is positive, and Eq. (3.3) is

dJðWÞ

dn
¼ � Z

XM
i¼1

XM
j¼1

qJ

qwij

XM
k¼1

qJ

qwik

wjk

¼ � Z
XM
i¼1

qTi Wqi, ð3:5Þ

where qi denotes the ith column vector of qJ=qW.
Therefore, when W is positive definite, dJðWÞ=dn is not
positive, which leads that the cost function JðWÞ is a
Lyapunov function of the modified infomax algorithm.
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