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Abstract

This paper is concerned with the global exponential stability analysis problem for a general class of stochastic neural networks with

mixed time-delays. The mixed time-delays under consideration comprise both the discrete time-varying delays and the distributed time-

delays. The main purpose of this paper is to establish easily verifiable conditions under which the delayed stochastic neural network is

exponentially stable in the mean square in the presence of both the discrete and distributed delays. By employing a new

Lyapunov–Krasovskii functional and conducting stochastic analysis, a linear matrix inequality (LMI) approach is developed to derive

the criteria of the exponential stability. Furthermore, the main results are specialized to deal with the analysis problem for the global

asymptotic stability within the same LMI framework. The proposed criteria can be readily checked by using some standard numerical

packages such as the Matlab LMI toolbox. A simple example is provided to demonstrate the effectiveness and applicability of the

proposed testing criteria.
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1. Introduction

The well-known Hopfield neural networks were firstly introduced by Hopfield [14,15] in early 1980s. Since then, both the
mathematical analysis and practical applications of Hopfield neural networks have gained considerable research attention.
Hopfield neural networks have already been successfully applied in many different areas such as combinatorial
optimization, knowledge acquisition and pattern recognition, see e.g. [20,21,28]. It should be pointed out that, these
applications are largely dependent on the stability of the equilibrium point of neural networks. Stability, as one of the most
important properties for neural networks, is crucially required when designing neural networks. It is often the case in
practice that, the neural network is designed with only one equilibrium point, and this equilibrium point is expected to be
globally stable. For example, the neural network that is applied to solve the optimization problem must have one unique
equilibrium point and be globally stable.

In both the biological and artificial neural networks, the interactions between neurons are generally asynchronous,
which give rise to the inevitable signal transmission delays. Also, in electronic implementation of analog neural networks,
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time-delay is usually time-varying due to the finite switching speed of amplifiers. It is known that time-delays may cause
undesirable dynamic network behaviors such as oscillation and instability. Consequently, the stability analysis problems
for delayed neural networks have received considerable research attention. So far, a large amount of results have appeared
in the literature, see e.g. [1,2,7–10,19,26,27,29] and references therein, where the delay type can be constant, time-varying,
or distributed, and the stability criteria can be delay-dependent or delay-independent. Note that continuously distributed
delays have recently gained particular attention, since a neural network usually has a spatial nature due to the presence of
an amount of parallel pathways of a variety of axon sizes and lengths.

On the other hand, in real nervous systems, the synaptic transmission is a noisy process brought on by random
fluctuations from the release of neurotransmitters and other probabilistic causes. It has also been known that a neural
network could be stabilized or destabilized by certain stochastic inputs [4]. Hence, the stability analysis problem for
stochastic Hopfield neural networks has begun to attract research interests, and some initial results have been obtained, see
e.g. [4,16,17,24]. It should be mentioned that, in most existing literature tackling stochastic neural networks, the time-
delays have been assumed to be either discrete or distributed, and the stability criteria have been derived mainly based on
the computation of matrix norms. To the best of the authors’ knowledge, the exponential stability analysis problem for
stochastic Hopfield neural networks with both the discrete and distributed time-delays has not been fully investigated, and
remains important and challenging.

In this paper, we deal with the global exponential stability analysis problem for a class of stochastic Hopfield neural
networks with simultaneous presence of both the discrete and distributed time-delays. By utilizing a novel
Lyapunov–Krasovskii functional and using stochastic analysis tools, we show that the addressed stability analysis
problem is solvable if two linear matrix inequalities are feasible. Hence, different from the commonly used matrix norm
theories (such as the M-matrix method), a unified linear matrix inequality (LMI) approach is developed to establish
sufficient conditions for the neural networks to be globally exponential stable in the mean square. Note that LMIs can be
easily solved by using the Matlab LMI toolbox, and no tuning of parameters is required [5]. A numerical example is
provided to show the usefulness of the proposed global stability condition.

Notations: Throughout this paper, Rn and Rn�m denote, respectively, the n dimensional Euclidean space and the set of all
n�m real matrices. The superscript ‘‘T’’ denotes the transpose and the notation XXY (respectively, X4Y ) where X and
Y are symmetric matrices, means that X � Y is positive semi-definite (respectively, positive definite). I is the identity matrix
with compatible dimension. We let h40 and Cð½�h; 0�;RnÞ denote the family of continuous functions j from ½�h; 0� to Rn

with the norm kjk ¼ sup�hpyp0 jjðyÞj, where j � j is the Euclidean norm in Rn. If A is a matrix, denote by kAk its operator

norm, i.e., kAk ¼ supfjAxj : jxj ¼ 1g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðA

TAÞ
p

where lmaxð�Þ (respectively, lminð�Þ) means the largest (respectively,
smallest) eigenvalue of A. l2½0;1� is the space of square integrable vector. Moreover, let ðO;F; fFtgtX0;PÞ be a complete

probability space with a filtration fFtgtX0 satisfying the usual conditions (i.e., the filtration contains all P-null sets and is

right continuous). Denote by L
p
F0
ð½�h; 0�;RnÞ the family of all F0-measurable Cð½�h; 0�;RnÞ-valued random variables

x ¼ fxðyÞ : �hpyp0g such that sup�hpyp0 EjxðyÞj
po1 where Ef�g stands for the mathematical expectation operator with

respect to the given probability measure P. Sometimes, the arguments of a function will be omitted in the analysis when no
confusion can arise.

2. Problem formulation

Consider, on a probability space ðO;F;PÞ, the following stochastic neural network with discrete and distributed time-
delays of the form:

duiðtÞ ¼ �diuiðtÞ þ
Xn

j¼1

aijf jðujðtÞÞ þ
Xn

j¼1

bijgjðujðt� t1ðtÞÞÞ þ
Z t

t�t2

Xn

j¼1

cijhjðujðsÞÞdsþ Ji

" #
dt

þ siðt; u1ðtÞ; . . . ; unðtÞ; u1ðt� t1ðtÞÞ; . . . ; unðt� t1ðtÞÞÞ dwðtÞ; i ¼ 1; . . . ; n, ð2:1Þ

where n is the number of the neurons in the neural network, uiðtÞ denotes the state of the ith neural neuron at time t,
f jðujðtÞÞ, gjðujðtÞÞ and hjðujðtÞÞ are the activation functions of the jth neuron at time t. The constants aij , bij and cij denote,
respectively, the connection weights, the discretely delayed connection weights, and the distributively delayed connection
weights, of the jth neuron on the i neuron. Ji is the external bias on the ith neuron, di denotes the rate with which the ith
neuron will reset its potential to the resting state in isolation when disconnected from the network and external inputs. t1ðtÞ
is the time-varying discrete time-delay with bound t�1, i.e.,

0pt1ðtÞpt�1, (2.2)
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