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In this paper, the stability analysis issue of stochastic recurrent neural networks with unbounded time-

varying delays is investigated. By the idea of Lyapunov function and the semi-martingale convergence

theorem, both pth moment exponential stability and almost sure exponential stability are obtained.

Moreover, the M-matrix technique is borrowed to make the results more applicable. Our criteria can be

used not only in the case of bounded delay but also in the case of unbounded delay. Some earlier results are

improved and generalized. An example is also given to demonstrate our results.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

To date, delayed recurrent neural networks have been extensively
studied in the literature, see, for example, Refs. [1,4,10,11,13,16],
where the time delays under consideration can be classified as
constant delays, time-varying delays and distributed delays. Usually,
constant fixed time delays in the models of delayed feedback systems
serve as good approximation in simple circuits having a small number
of cells [24]. In delayed neural networks, a constant delay is only a
special case. In most situations, delays are variable, and in fact
unbounded. That is, the entire history affects the present. In some
practical applications and hardware implementations of neural
networks, the inevitable time delay may be unbounded. Therefore,
the studies of neural networks with time-varying delays and
unbounded time delays are more important and necessary than
those with constant delays, and the corresponding research can be
seen in [21,23].

In fact, a real system is usually affected by external perturbations
which have great uncertainty and hence may be treated randomly
[22], as pointed out by Haykin [6] that in real neural systems, the
synaptic transmission is a noisy process brought on by random

fluctuations from the release of neurotransmitters and other
probabilistic causes. Hence, it is important to consider stochastic
effects to the dynamical behaviors of neural networks. Liao and Mao
[14,15] initiated the study of stability and instability of stochastic
neural networks. In recent years, many researchers have a lot of
contributions to the stability analysis issue for stochastic recurrent
neural networks (SRNNs) with time delays. However, to the best of
our knowledge, there are no corresponding results of SRNNs with
unbounded time-varying delays.

Motivated by the above discussions, in this paper we consider
the following SRNNs model:

dxiðtÞ ¼ �cixiðtÞþ
Xn

j ¼ 1

aijfjðxjðtÞÞþ
Xn

j ¼ 1

bijgjðt,xjðt�djðtÞÞÞ

2
4

3
5dt

þ
Xn

j ¼ 1

sijðt,xjðtÞ,xjðt�djðtÞÞÞdwjðtÞ, i¼ 1,2, . . . ,n: ð1:1Þ

where djðtÞðj¼ 1, . . . ,nÞ are delay functions which may be
unbounded. Denote yðtÞ ¼ ðy1ðtÞ,y2ðtÞ, . . . ,ynðtÞÞ

T
¼ ðx1ðt�d1ðtÞÞ,

x2ðt�d2ðtÞÞ, . . . ,xnðt�dnðtÞÞÞ
T. Eq. (1.1) can be rewritten as

dxðtÞ ¼ ½�CxðtÞþAf ðxðtÞÞþBgðt,yðtÞÞ�dtþsðt,xðtÞ,yðtÞÞ dwðtÞ, ð1:2Þ

where xðtÞ ¼ ðx1ðtÞ,x2ðtÞ, . . . ,xnðtÞÞ
TARn is the state vector associated

with the neurons; C ¼ diagðc1,c2, . . . ,cnÞ with ci40 represents the
rate with which the ith unit will reset its potential to the resting state
in isolation when disconnected from the network and the external
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stochastic perturbations; A¼ ðaijÞn�n and B¼ ðbijÞn�n represent the
connection weight matrix and the delayed connection weight matrix,
respectively; fi and gi are activation functions, f ðxðtÞÞ ¼ ðf1ðx1ðtÞÞ,
f2ðx2ðtÞÞ, . . . ,fnðxnðtÞÞÞ

TARn, gðt,yðtÞÞ ¼ ðg1ðt,x1ðt�d1ðtÞÞÞ, g2ðt,x2

ðt�d2ðtÞÞÞ, . . . ,gnðt,xnðt�dnðtÞÞÞÞ
TARn. Let t¼max1r irndið0Þ. s¼

ðsijÞn�n is the diffusion coefficient matrix.
In [19], Sun and Cao investigated Eq. (1.2) with bounded delay

functions djðtÞðj¼ 1, . . . ,nÞ. Here, we extend the delay functions djðtÞ

to unbounded delays and give the criteria on both pth moment
exponential stability and almost sure exponential stability. The
main results can be described by the following inequalities:

lim sup
t-1

logEjxðt,xÞjp

t
r�q, ð1:3Þ

lim sup
t-1

logjxðt,xÞj
t

r�
q

p
, a:s:; ð1:4Þ

where p, q40 are independent of the initial data x.
Many methods have been exploited to study the stability in the

publications. Such as the method of variation parameter [19],
Halanay-type inequality [8], the linear matrix inequality (LMI)
approach [18], and Razumikhin method [26]. However, these
techniques cannot extend to the case of unbounded delays directly.
To overcome difficulties from unbounded delays, we develop
several new techniques. By virtue of the M-matrix, several useful
criteria are obtained. These criteria are described only in terms of
given system parameters and hence are extremely useful in
applications.

In the next section, we give some preliminaries. The main
results of this paper are developed in Section 3 where several
sufficient criteria are established for moment exponential stability
and almost sure exponential stability. Finally, we consider an
example to illustrate our results. The example shows that our
criteria can be used not only in the case of bounded delay but also in
the case of unbounded delay.

2. Preliminaries

Throughout this paper, unless otherwise specified, we use the

following notations. Let j � j be the Euclidean norm in Rn. If A is a
vector or matrix, its transpose is denoted by AT. If A is a matrix,

denote its trace norm by jAj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
traceðATAÞ

p
. For any given xARn,

assume x¼ ðx1,x2, . . . ,xnÞ
T, xb03xi40 ð1r irnÞ. Let Rþ ¼ ½0,1Þ

and Rn
þ þ ¼ fxARn : xb0g. For any c¼ ðc1, � � � ,cnÞ

TARn, let

diagðcÞ ¼ diagðciÞ ¼ diagðc1,c2, � � � ,cnÞ denote the n�n matrix with
all elements zero except those on the diagonal which are c1,y,cn. In
this paper, const always represents some positive constant whose
value is not important.

Let ðO,F ,PÞ be a complete probability space with a filtration
fF tgtZ0 satisfying the usual conditions, that is, it is right continuous
and increasing while F0 contains all P�null sets. Let w(t) be an
n-dimensional Brownian motion defined on this probability space.

Let C2ðRn;Rþ Þ denote the family of all functions from Rn to Rþ
which are continuously twice differentiable. For any VðxÞAC2ðRn;
Rþ Þ, we define a function LV : Rþ �Rn

�Rn-R by

LVðt,x,yÞ ¼ VxðxÞ½�CxþAf ðxÞþBgðt,yÞ�þ1
2trace½sTðt,x,yÞVxxðxÞsðt,x,yÞ�,

ð2:1Þ

where

VxðxÞ ¼
@VðxÞ

@x1
,
@VðxÞ

@x2
, � � � ,

@VðxÞ

@xn

� �
,VxxðxÞ ¼

@2VðxÞ

@xi@xj

� �
n�n

:

If x(t) is a solution of Eq. (1.2), by the Itô formula,

dVðxðtÞÞ ¼ LVðxðtÞÞ dtþVxðxðtÞÞsðt,xðtÞ,yðtÞÞ dwðtÞ,

where LVðxðtÞÞ ¼LVðt,xðtÞ,yðtÞÞ.
In this paper, denote DiðtÞ ¼ t�diðtÞ. We assume that diðtÞAC1

ðRþ ;Rþ Þ, and

Zi :¼ inf
tZ0

DuiðtÞ40, ð1r irnÞ ð2:2Þ

which clearly shows that DiðtÞ is a strictly increasing function on
½0,1Þ and has the inverse function D�1

i ðsÞ defined on ½�dið0Þ,1Þ
with the following property:

½D�1
i ðsÞ�u¼

1

DuiðtÞ
rZ�1

i : ðs¼DiðtÞÞ ð2:3Þ

Lemma 2.1. Let Zi be defined in (2.2), then Zir1ði¼ 1, . . . ,nÞ.

Proof. By (2.2), noting thatdiðtÞZ0, we haveDuiðtÞZZi andDiðtÞrt

for all tZ0. Then for any t40

Zir
1

t

Z t

0
DuiðsÞ ds¼

DiðtÞ�Dið0Þ

t
r

tþt
t

,

where t¼max1r irndið0Þ. Letting t-1, we have Zir1. &

Denote by C ¼ Cð½�t,0�,Rn
Þ the family of all continuous func-

tions from ½�t,0� to Rn with the norm JjJ¼ sup�tryr0jjðyÞj,
which forms a Banach space. If t¼ 0, then C ¼Rn.

Throughout this paper, the following standard hypothesis are
needed:

(H1) fi(u) satisfies the Lipschitz condition, that is, for each
i¼1,2,y,n, there exists a constant si40 such that

jfiðuÞ�fiðvÞjrsijx�yj, 8u,vAR:

(H2) For each i¼1,2,y,n, there exist constants e,ri40 such that

jgiðt,uÞjrrijuje
�ediðtÞ, tZ0,uAR:

(H3) For each i,j¼1,2,y,n, there exist constants e,lij,lijZ0 such
that

s2
ijðt,u,vÞrliju

2þlijv
2e�edjðtÞ,tZ0,u,vAR:

Remark 2.2. Since e�ediðtÞ is decreasing in e, the above conditions
will still hold when e is replaced by any euAð0,e�. If ti ¼ suptZ0

diðtÞo1 ði¼ 1,2, . . . ,nÞ, then e�ediðtÞZe�eti-1 as e-0. Hence,
when tio1, conditions (H2) and (H3) do not need the terms
e�ediðtÞ ði¼ 1, . . . ,nÞ, namely, terms e�ediðtÞ play a role only when
ti ¼1.

For the purpose of stability, let f ð0Þ � 0,gðt,0Þ � 0,sðt,0,0Þ � 0,
which shows that Eq. (1.2) admits a trivial solution. In this paper,
we also assume that g and s satisfy the local Lipschitz condition.

Let Q ¼ ½qij�ARn�n, qijr0oqii for i,j¼ 1,2, . . . ,n,ia j. Q is called
an M-matrix if all the eigenvalues of Q have positive real parts.
There are many conditions which are equivalent to the statement
that Q is an M-matrix and we now cite some of them for the use of
this paper. For more detailed information, please see [3].

Lemma 2.3. Assume that Q ¼ ½qij�ARn�n, qijr0oqii ðia j,i,j¼
1, . . . ,nÞ, then the following statements are equivalent:

(i) Q is an M-matrix.
(ii) There exists cARn

þ þ such that QTcARn
þ þ .

(iii) All the leading principal minors of Q are positive.

Then we give the continuous semi-martingale convergence
theorem (cf. [17]).
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