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2d-signals: applications to biomedical signals
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Abstract

The paper addresses two problems that are frequently encountered when modeling data by linear combinations of nonlinear

parameterized functions. The first problem is feature selection, when features are sought as functions that are nonlinear in their parameters

(e.g. Gaussians with adjustable centers and widths, wavelets with adjustable translations and dilations, etc.). The second problem is the

design of an intelligible representation for 1D- and 2D- signals with peaks and troughs that have a definite meaning for experts. To

address the first problem, a generalization of the orthogonal forward regression method is described. To address the second problem, a

new family of nonlinear parameterized functions, termed Gaussian mesa functions, is defined. It allows the modeling of signals such that

each significant peak or trough is modeled by a single, identifiable function. The resulting representation is sparse in terms of adjustable

parameters, thereby lending itself easily to automatic analysis and classification, yet it is readily intelligible for the expert. An application

of the methodology to the automatic analysis of electrocardiographic (Holter) recordings is described. Applications to the analysis of

neurophysiological signals and EEG signals (early detection of Alzheimer’s disease) are outlined.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Modeling a signal by a family of parameterized functions
is particularly useful in a variety of fields such as pattern
recognition, feature extraction, classification or modeling.
It is a straightforward way of performing information
compression: the finite set of parameters of the modeling
function may be a sparse representation of the signal of
interest.

Typical families of parameterized functions used for
modeling are polynomials, wavelets, radial basis functions,
neural networks, etc. For a given modeling problem, the
choice between those families is based on such criteria as
implementation complexity, sparsity, number of variables
of the quantity to be modeled, domain knowledge. The

latter factor is actually the driving force behind the
methodology described in the present paper.
More specifically, the scope of this article is twofold:

first, we address the problem of feature selection, i.e. the
problem of finding the most appropriate set of functions
within a given family of functions that are nonlinear in

their parameters; the solution that we describe here is
generic. The second purpose is more application-specific:
the design of a meaningful representation for 1D or
2D- signals that exhibit bumps and/or troughs having
specific meanings for the domain expert, i.e. the problem
of finding a representation such that each bump or
trough is modeled by a single, uniquely identifiable
function. The intelligibility of the representation by
the expert is especially important in the field of biological
signal analysis: an application of our method to
anomaly detection from electrocardiographic recordings
is described (1D-signals), and an application to the
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modeling of time-frequency maps of electrophysiology
and electro-encephalography recordings (2D-signals) is
outlined.

The first part of the paper is devoted to the description of
generalized orthogonal forward regression (GOFR), an
extension of the powerful orthogonal forward regression
(OFR) method of modeling by parameterized functions
that are linear with respect to their parameters. We show
that OFR can be extended to modeling by functions that
are nonlinear with respect to their parameters. We show
that GOFR overcomes some important limitations of
traditional OFR.

In the second part of the paper, we define Gaussian mesa

functions, which are shown to be especially appropriate for
modeling signals that exhibit positive and negative peaks,
in such a way that each peak can be appropriately modeled
by a single mesa function.

Finally, we describe an application of the methodology
to the automatic analysis of long-term electrocardiographic
recordings (Holter recordings). We first show how each
positive or negative peak can be modeled by a single mesa
function. Then we show how each function can be labeled,
automatically and unambiguously, with the labels used
routinely by experts, and how automatic discrimination
between two types of heartbeats can be performed with
that signal representation. As a final illustration, we outline
an application of the methodology to time–frequency maps
from electrophysiological and electroencephalographic
recordings.

2. Orthogonal forward regression for feature selection

2.1. The feature selection problem

Let gg be a parameterized function and g the vector of its
parameters. Let O ¼ fgggg2G be a family of such functions,
where G is the set of the parameters. Note that the
cardinality of O can be either finite or infinite.

Modeling a function f (f 2 L2ðRÞ) with M functions,
chosen from O, consists of finding a function ~f that is a
linear combination of M functions of O such that the
discrepancy eM between f and ~f is as small as possible:

f ¼
XM
i¼1

ggi
2O

aiggi
þ eM . (1)

That problem amounts to estimating M parameter vectors
fgigi¼1::M and M scalar parameters faigi¼1::M to construct ~f .
It can be solved in two steps:

� a feature selection step: in the set O, find the subset of M

functions that are most relevant to the modeling of the
signal of interest (see for instance [9,16]),
� an optimization step: find the parameters of the

functions selected as relevant features at the previous
step.

2.1.1. Optimization

In the optimization step, fgi; aigi¼1::M are estimated from
training data, i.e. specific values fxkgk¼1::N of the variable
(or vector of variables), for which measurements fk of the
signal were performed; the measurements are assumed to
have additive zero-mean noise ek:

f k ¼ f ðxkÞ þ ek. The set xk; f k

� �� �
k¼1::N

is called the
training set.
The least squares cost function J is defined as:

J ¼
XN

k¼1

f k �
~f xkð Þ

� �2
¼
XN

k¼1

f k �
XM
i¼1

ggi
2O

aiggi
xkð Þ

0
B@

1
CA

2

. (2)

Eq. (2) can be also written in the following form,
highlighting the modeling error eMðxkÞ and the measure-
ment noise ek:

J ¼
XN

k¼1

f k � f xkð Þ
� �

þ f xkð Þ �
~f xkð Þ

� �� �2
¼
XN

k¼1

ek þ eM xkð Þð Þ
2.

(3)

The optimal model in the least squares sense ~f is obtained
by minimizing function J with respect to its parameters:

~f ¼
XM
i¼1

ggi
2O

aiggi
(4)

with J ai; gi

� �
i¼1:;::M

� �
¼ mina2R;g2G J a; g

� �� �� �
.

2.1.2. Feature selection

The minimization of J is a multivariable nonlinear
optimization problem, which is usually solved by
iterative algorithms such as the BFGS algorithm or the
Levenberg–Marquardt algorithm (see for instance
[12,15]). Being iterative, those algorithms require the
choice of initial values of the parameters fai; gigi¼1;:::M .
Therefore, prior to the optimization step, the number
M of functions must be chosen, together with the initial
values of the M parameter vectors fgig and of the
parameters faig.
For functions that are local in space, such as Gaussians,

random initialization of the parameters (centers and
variances) is not recommended, because many random
initializations and optimizations may be required in order
to find a satisfactory model. In such a case, a frequent
strategy consists in choosing one Gaussian per observation
of the training set, centered on that point in input space,
and with arbitrary variance [14]. The main shortcoming of
the above initialization is the fact that the number of
selected functions (M) is not optimal: it is related to the
number of examples, which may have no relation whatso-
ever to the complexity of the data to be modeled. The least-
squares support vector machine (LS-SVM, also known as
Ridge SVM) [5] starts with one function per example, and
performs a selection depending on the complexity of the
margin boundary, but the parameters of the RBF functions
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