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Abstract

This article presents a new system for automatically constructing and training radial basis function networks based on original

evolutionary computing methods. This system, called Genetic Algorithm Radial Basis Function Networks (GARBFN), is based on two

cooperating genetic algorithms. The first algorithm uses a new binary coding, called basic architecture coding, to get the neural

architecture that best solves the problem. The second, which uses real coding, takes its inspiration from mathematical morphology theory

and trains the architectures output by the binary genetic algorithm. This system has been applied to a laboratory problem and to breast

cancer diagnosis. The results of these evaluations show that the overall performance of GARBFN is better than other related

approaches, whether or not they are based on evolutionary techniques.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

One of the main fields of artificial intelligence research is
the development of self-adaptive systems capable of
transforming to solve different problem types [17]. On
account of their pattern-based learning, data generalization
and noise filtering capabilities [18,23], neural networks are
commonly used within artificial intelligence to perform
real-world tasks.

Radial basis function networks (RBFN) are a type of
network that is very useful for pattern classification
problems [27]. This is because, unlike the multilayer
perceptron (MLP) [23] whose output is generated by the
action of all the neurons in the network weighted by the
weights of its connections, the output of a RBFN is mainly
influenced by the hidden layer neuron, whose centre is
closer to the input pattern. Therefore, RBFNs are
local approximators, whereas MLPs are global approxi-
mators [13].

The benefits of using a RBFN are: (i) local data
approximation uses few hidden units for any input; (ii)
the hidden and output layer parameters can be trained
separately using a hybrid algorithm, and (iii) only one,
non-linear, hidden layer is used, whereas the output is
linear. As only one hidden layer is used, they converge
faster than a MLP with several hidden layers [27].
Despite the advantages of RBFNs, the design of an

optimal architecture to solve a particular problem is far
from being a straightforward matter [15]. Additionally,
RBFNs trained according conventional gradient descent
methods have been shown to be more likely to get trapped
in local optima, and they are, therefore, less accurate than
when applied to MLPs [4]. This is because, as far as
RBFNs are concerned, apart from finding a set of weights
for connections that best solve the problem, the centres of
the radial basis functions of the hidden layer neurons have
to be searched.
Several research papers have, therefore, focused on

designing new approaches based on different search
and optimization techniques to choose the best neural
architecture to solve a given problem and to speed up
the training process. Some of these studies deal with the
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so-called incremental algorithms [26], which start from a
predefined neural architecture and then dynamically add
and remove neural connections during the training process.
The performance of these algorithms is low and they tend
to converge prematurely depending on the original
architecture chosen. They cannot, therefore, guarantee a
good solution [22].

To surmount the problem of trapping in local optima
and improve the accuracy of the results of applying
gradient backpropagation to RBFN, research has been
conducted aimed at building hybrid training algorithms [7].
These algorithms combine an unsupervised search of the
hidden layer neuron centres using clustering algorithms,
such as k-means, or improved versions, like moving
k-means, with gradient backpropagation to get the
weights of the connections [19]. However, these approaches
are still beset by the very same weakness of local optima
trapping, because they use derivatives-based optimization
methods.

Other more promising studies originate from the
identification of synergies between evolutionary algorithms
and artificial neural networks that can be combined in
various ways. These include works related to the genetic
adaptation of the internal structure of the network
[3,16,25]. Genetic algorithms have also been used to
partially replace the network learning method, first
applying genetic algorithms to accomplish global search
until a point near the solution is reached and then running
a local search with classical gradient descent methods to get
the optimum solution [5,27]. Other numerical approaches,
like regularized orthogonal least squares can also be used
[6] instead of gradient descent methods. The snag with all
these approaches is that it is not known what is the best
time to switch from global to local search.

For any chosen evolutionary optimization approach, the
way in which the neural networks that make up the search
space are encoded is a crucial step in automatic network
design [14]. Therefore, several approaches have been
developed to produce efficient codifications of artificial
neural networks, and specifically RBFNs. The first of these
is the direct binary encoding of network configuration [10],
where each bit determines the presence or absence of a
single connection. There are two major problems with this
approach. First, convergence performance is degraded as
the number of neurons in the hidden layer increases
because the search space is much larger. Second, direct
encoding methods cannot prevent illegal points in the
search space (architectures that are not permitted for a
RBFN). At the other end of the scale from the direct
encoding methods are other approaches to RBFN codifica-
tion, where there is no direct correspondence between each
bit of the string and each connection of the neural
architecture. These are called indirect encoding methods,
of which the graph generation system is the method for
which the best results have been reported [16]. This
approach is based on the binary codification of grammars
that describe the architecture of the network and prevent

the codification of illegal neural architectures. The problem
here is that a one-bit variation in a string results in a totally
different network. This degrades the convergence process
of the genetic algorithm that uses this codification.
Training RBFNs can be seen as an optimization

problem, where the mean square error has to be minimized
by adjusting the values of the weights of the connections
and the centres of the neurons in the hidden layer.
Evolutionary algorithms are therefore a suitable option
for dealing with this problem. Michalewicz states that if a
problem is real-valued in nature, then a real number
genetic algorithm is faster and more precise than a binary
encoded genetic algorithm [20]. Therefore, genetic algo-
rithms using real number codification to represent the
weights of the neural network can be expected to yield the
best results. There is a variety of techniques for handling
real-coded genetic algorithms. Radcliffe’s flat crossover
chooses parameters for an offspring by uniformly picking
parameter values from (inclusively) the two parents’
parameter values [24]. BLX-a was then proposed [11] to
work around the premature convergence problems of this
operator. BLX-a uniformly picks values that lie between
two points that contain the two parents and may extend
equally on either side of the interval defined by the parents.
This new method, however, is very slow at approximating
to the optimum because the extension of the interval
defined by the parents is determined by a static, user-
specified parameter a set at the start of the run. Another
important crossover technique for real-coded genetic
algorithms is UNDX [21], which can optimize functions
by generating offspring using the normal distribution
defined by three parents. The problem here is the high
computational cost required to calculate the normal
distribution. Other research combines statistical methods,
pruning and real-coded genetic algorithms [13], although
the problem is, again, the computational cost of calculating
the Bayesian regularization on which this algorithm is
based.
This paper presents a new evolutionary system, called

Genetic Algorithm Radial Basis Function Networks
(GARBFN), which automatically designs and trains
RBFNs to solve a given problem stated as a set of training
patterns. The work presented here is the basis for
automatically building RBFN-based self-adaptive intelli-
gent systems. GARBFN consists of a binary-coded genetic
algorithm that searches for neural architectures in combi-
nation with a hybrid training method that employs a k-
mean clustering algorithm to ascertain the centres of the
neurons in the hidden layer, and a real-coded genetic
algorithm rather than any of the other conventional
methods to adjust the weights of the connections.
The binary-coded genetic algorithm employs the basic

architectures codification method [3], which has been
adapted to work on radial basis function architectures. A
specialized binary crossover operator—the RBFN cross-
over (RBFN-X)—has also been designed to work with the
proposed codification method. This operator outperforms
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