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Abstract

Identification of mixed independent subspaces is thought to suffer from combinatorial explosion of two kinds: the minimization of

mutual information between the estimated subspaces and the search for the optimal number and dimensions of the subspaces. Here we

show that independent autoregressive process analysis, under certain conditions, can avoid this problem using a two-phase estimation

process. We illustrate the solution by computer demonstration.
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1. Introduction

Identification of linear dynamical systems (LDS) driven
by non-Gaussian noise is important, it is considered hard
and it has not been solved yet in general [3]. Special
solutions are known, for example, one can solve the
problem if the observation process of the LDS is noiseless
and if the hidden processes are driven by independent non-
Gaussian noises. In this case the independent subspaces
can be identified by independent subspace analysis (ISA)
on innovations (ISAI) [5] and then the AR processes can be
identified within the subspaces. This method, however, is
slow, because (i) the minimization of mutual information
between the estimated subspaces and (ii) the search for the
optimal number and dimensions of the subspaces are both
subject to combinatorial explosions. Here, we introduce a
two-phase procedure, which avoids the combinatorial
explosion under certain conditions.

2. The IPA model

Assume that we have d pieces of mi-dimensional first
order AR processes

siðtþ 1Þ ¼ FisiðtÞ þ miðtÞ, (1)

where Fi 2 Rmi�mi , si 2 Rmi , i ¼ 1; . . . ; d, and miðtÞ 2 Rmi are
non-Gaussian, temporally independent and identically
distributed (i.i.d.) noises. For the sake of simplicity, we
shall assume that all mi’s are equal, mi ¼ m 8i, but all of the

results concern the general case. Sources si are the hidden

processes of the external world. We cannot observe them
directly, only their mixture is available for observation. Let
us use the following notation sðtÞ ¼ ½ðs1ðtÞÞT; . . . ;
ðsdðtÞÞT�T 2 Rdm, where superscript T denotes transposition.
Our observation model is

xðtÞ ¼ AsðtÞ, (2)

where A 2 Rmd�md is the mixing matrix. Eqs. (1) and (2),
together, form an LDS. Estimations for LDS parameters
exist for Gaussian noise mðtÞ ð¼ ½ðn1ðtÞÞT; . . . ; ðndðtÞÞT�T 2

RdmÞ [3]. We, however, assume that noise m is non-zero,
non-Gaussian, and i.i.d. We also assume that the matrix A

is invertible. Then, as a result, we have an ISA problem on
multi-dimensional AR processes [5]. Independent compo-
nent analysis (ICA) is recovered if Fi ¼ 0 for all i and if
m ¼ 1 [2].
Let F 2 Rmd�md denote the block-diagonal matrix con-

structed from matrices F1; . . . ;Fd , i.e., F ¼ blockdiag

ðF1; . . . ;FdÞ. Then parameters of the model

sðtþ 1Þ ¼ FsðtÞ þ mðtÞ, ð3Þ

xðtÞ ¼ AsðtÞ ð4Þ
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are to be approximated from the observations, e.g., by
entropy estimation [5].

3. ISA model

Assume that we have d pieces of m-dimensional
independent, non-Gaussian, i.i.d. sources denoted by miðtÞ

(i ¼ 1; . . . ; d). Further, assume that only their mixture
eðtÞ ¼ AmðtÞ can be observed. The task is the estimation of
matrix A and sources miðtÞ given the eðtÞ signals, where
eðtÞT ¼ ½ðe1ðtÞÞT; . . . ; ðedðtÞÞT�, eiðtÞ 2 Rm. Let H denote
Shannon’s entropy. Then, one can solve this problem by
minimizing the cost function J ¼

Pd
i¼1 HðeiÞ. This method

requires estimations of Shannon’s entropy for groups of the
coordinates [4].

3.1. Reduction of ISA to ICA þ search for permutations

It has been observed experimentally that for certain ISA
tasks ICA can estimate components of the subspaces
[1,4,5]. Sufficient conditions that make the estimation exact
are provided below:

Theorem 1 (Reduction of ISA to ICAþ permutation

search). Assume that for the ISA task and for sources

mi¼½ni
1; . . . ; n

i
m�

T ði ¼1; . . . ; dÞ we have that H
Pm

j¼1 wjni
j

� �
X

Pm
j¼1 w2

j Hðni
jÞ, where

Pm
j¼1 w2

j ¼ 1 holds for all w ¼ ðw1; . . . ;

wmÞ
T. Then, if we execute an ICA algorithm that minimizes

the sum of the individual entropies (i.e.,
Pd

i¼1

Pm
j¼1 Hðei

jÞ) on

observed data eðtÞ ¼ AmðtÞ, and if the WICA solution of the

ICA algorithm is unique (up to permutation and the sign of

the components), then the same matrix solves the ISA task

(up to permutation and the sign of the components). In other

words, it is sufficient to search for the WISA matrix of the

ISA task in the form of WISA ¼ PWICA, where P 2 Rmd�md

is a permutation matrix.

The proof and sufficient conditions of this theorem can
be found in [7].

4. Parameter estimation

In this section we introduce a method, which is able to
estimate the subspaces of our model (Eqs. (3) and (4))
without any combinatorial algorithm. Note that Eqs. (3)
and (4) involve that the stochastic process fxðtÞg is also an
AR process:

xðtþ 1Þ ¼ Asðtþ 1Þ ¼ AFsðtÞ þ AmðtÞ

¼ AFA�1xðtÞ þ AmðtÞ. ð5Þ

Let E denote the expectation operator. The innovation eðtÞ

of the fxðtþ 1Þg process is defined as eðtÞ ¼ xðtþ 1Þ
�Eðxðtþ 1ÞjxðtÞ; xðt� 1Þ; . . . ; Þ. AmðtÞ is independent of
xðtÞ, thus Eðxðtþ 1ÞjxðtÞ; xðt� 1Þ; . . . ; Þ ¼MxðtÞ, where
M ¼ AFA�1xðtÞ, and the innovation of process fxðtþ 1Þg
is equal to eðtÞ ¼ AmðtÞ, which—according to our assump-

tions—is an i.i.d series. Therefore, any ISA algorithm can
be applied to uncover the hidden noises of process eðtÞ.
Under the condition that the components of the ISA task

can be estimated by an ICA algorithm, we can take
advantage of the hidden AR processes to uncover the
unknown permutations of the coordinates of source s.
Also, the dimensions of the subspaces can be revealed by
the estimation of matrix F. Thus, the proposed algorithm
has two phases:

� Phase (1)

(a) Estimate innovation eðtÞ from series fxðtÞg. Let M̂

denote an estimation of matrix AFA�1. For exam-
ple, let M̂:¼arg minM

PT
t¼1 kxðtþ 1Þ �MxðtÞk2 and

êðtÞ:¼xðtþ 1Þ � M̂xðtÞ, where T stands for the
number of observations and k � k denotes the
Euclidean norm.

(b) Apply a traditional ICA on the estimated êðtÞ

innovations. Then, using the fact that eðtÞ ¼ AmðtÞ,
we have estimations for matrix Â�1 and for vector
m̂ðtÞ. Namely, Â�1:¼WICA, m̂ðtÞ:¼Â�1êðtÞ.

� Phase (2)

(a) ŝðtÞ:¼Â�1xðtÞ.
(b) F̂:¼arg minF

PT
t¼1 kFŝðtÞ þ m̂ðtÞ � ŝðtþ 1Þk2.

The estimation of the optimal matricesM and F in (1a) and
(2b) can be accomplished with standard mathematical tools
[6], or via neural networks. For non-neural solutions,
matrix F̂ can be computed directly, because
ŝðtþ 1Þ ¼ Â�1xðtþ 1Þ ¼ Â�1AFA�1ÂŝðtÞ þ Â�1AmðtÞ, thus

F̂ � Â�1M̂Â. (6)

For a Hebbian estimation of the prediction matrix F, note

that the negative gradient of the objective J ¼ 1
2
ksðtþ 1Þ �

FsðtÞk2 is proportional to ðsðtþ 1Þ � FsðtÞÞsðtÞT, and thus
the update rule for the estimation of F is

DF̂ ¼ mtðsðtþ 1Þ � FsðtÞÞsðtÞT, (7)

where mt is the learning rate that may depend on time. This
is the well-known Widrow–Hoff Delta-rule, also known as
Adaline rule, which has neural network implementations.
Matrix F̂—apart from the permutation of components—

has a block-diagonal structure. The corresponding compo-
nents can be found without combinatorial efforts by
grouping the hidden components that matrix F̂ connects
to each other (see Fig. 1(e)). We say that two coordinates i

and j are F̂-‘connected’ if maxðjF̂ ijj; jF̂ jijÞ4�Þ: (In the ideal
case � ¼ 0.) Then we can group the F̂-‘connected’
coordinates into separate subspaces using the following
algorithm: (1) Choose an arbitrary coordinate i and group
all jai coordinates to it which are F̂-‘connected’ with it. (2)
Choose an arbitrary and not yet grouped coordinate. Find
its connected coordinates. Group them together. (3)
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