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Abstract

In this paper, we extend soft nearest prototype classification by local metric learning and fuzzy classification. Thereby, the metric is

determined according to the given classification task. This may be done separately for each prototype or class specific. We apply the

method to cancer detection based on proteomic data.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Kohonen’s learning vector quantization (LVQ) belongs
to the class of supervised learning algorithms for crisp
nearest prototype classification [3]. Originally LVQ is based
on heuristics. Yet, several extensions of the basic scheme
exist to obtain a gradient descent approach [2]. Recently a
new method, soft nearest prototype classification (SNPC),
has been proposed by Seo et al. [6] in which soft
assignments of the data vectors to the prototypes, based
on a Gaussian mixture approach, are introduced.

However, crisp classification by LVQ-methods has the
disadvantage that overlapping classes cannot be repre-
sented adequately. A solution could be a post-labeling of
the prototypes according to the data statistics leading to a
fuzzy labeling. But in this case the prototype distribution
would not be optimized, because fuzzy labels cannot be
handled in LVQ methods during learning. Hence, a new
learning scheme has to be established. Based on SNPC we
derive such an adaptation scheme. Further, we improve the
model by incorporation of metric adaptation into the
learning dynamic.

We apply the new algorithm to profiling of mass
spectrometic data in cancer research. The underlying
algorithms for classification of the mass spectrometric data
are one crucial point to obtain valid and competitive
results. Further, for cancer research it is important to get a
judgement about the safety of the classification. The
proposed method offers a solution to these issues.

2. Crisp learning vector quantization

The standard algorithms for LVQ are LVQ1. . .LVQ3
introduced by Kohonen [3]. Several extensions have been
proposed, one of them is SNPC introducing a gradient
descent approach based on the expectation maximization
of a cost function given as

EðS;WÞ ¼
1

NS

XNS

k¼1

lcðvk; cvk
Þ, (1)

S ¼ fðv; cvÞg the set of all inputs v and their class label cv,
NS ¼ #S, W ¼ fwrg the set of all codebook vectors and
W ¼ fðwr; crÞg whereby cr is the class label of wr. The local
costs lcðvk; cvk

Þ are defined as

lcðvk; cvk
Þ ¼

X

r

utðrjvkÞð1� ar;cvk Þ (2)
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with value ar;cvk
equal the unity if cvk

¼ cr. Otherwise it is
zero. utðrjvkÞ are the soft-assignments representing the
probability that the input vector vk is assigned to the
prototype r. In case of a crisp winner-takes-all mapping one
has utðrjvkÞ ¼ 1 iff r is winner for vk. The local error is the
sum of the assignment probabilities ar;cvk

to all prototypes
of an incorrect class, and, hence, lcðvk; cvk

Þp1.
In order to minimize (1) the variables utðrjvkÞ are taken

as fuzzy assignments in SNPC. This allows a gradient
descent on the cost function (1). As proposed in [6], the
assignment probabilities are chosen to be of normalized
exponential form

utðrjvkÞ ¼
expð�dðvk;wrÞ=2t2ÞP
r0 expð�dðvk;wr0 Þ=2t2Þ

, (3)

whereby d is the standard Euclidean distance. As for
standard LVQ2.1, SNPC requires a window rule for
numerical stabilization [3,6]: the weight update is restricted
to all weights for which the local value

Zr ¼ lcðvk; cvk
Þ � ð1� lcðvk; cvk

ÞÞ (4)

is less than a threshold Z with 05Zo0:25.

3. Dynamic fuzzy labeling and metric adaptation

In Fuzzy Labeled SNPC (FSNPC) we allow fuzzy values
for ar;c to indicate the responsibility of weight vector wr to
class c such that 0par;cp1 and

PNL

c¼1 ar;c ¼ 1. These labels
should be adjusted automatically during training. However,
doing so, the crisp class information for prototypes,
assumed in the learning dynamic of SNPC (or generally
required in LVQ) [6], is no longer available. Yet, a
corresponding learning dynamic can be derived: in
complete analogy to the original SNPC one has

qlcðvk; cvk
Þ

qwr

¼ �
T

2t2
�
qdr

qwr

(5)

with T ¼ utðrjvkÞ � ð1� ar;cvk
� lcðvk; cvk

ÞÞ. Thereby, the loss
boundary property (2) remains valid. Parallely, the fuzzy
labels ar;cvk

can be optimized using qlcðvk; cvk
Þ=qar;cvk

:

Dar;cvk ¼ �utðrjvkÞ (6)

followed by subsequent normalization.
To adjust the window rule to now fuzzified values ar;cvk

we consider T. Using the Gaussian form (3) for utðrjvkÞ, the
term T can be rewritten as T ¼ ðTlc � TaÞ �Pðar;cvk

Þ with

Pðar;cvk Þ ¼
expð�dðvk;wrÞ=2t2ÞP

r0 ð1� ar;cvk
� ar0 ;cvk

Þ= expðdðvk;wr0 Þ=2t2Þ
(7)

and Tlc ¼ lcðvk; cvk
Þð1� lcðvk; cvk

ÞÞ and Ta ¼ ar;cvk
ð1þ

ar;cvk
Þ.

As in the original SNPC, 0plcðvk; cvk
Þð1� lcðvk; cvk

ÞÞp
0:25 because lcðvk; cvk

Þ fulfills the loss boundary property
(2) [6]. Hence, we have �2pT0p0:25 using the fact that
ar;cvk

p1. Further, the absolute value of the factor T0 ¼

Tlc � Ta has to be significantly different from zero to have
a valuable contribution in the update rule [6]. This yields

the window condition 05jT0j, which can be obtained by
balancing the local loss lcðvk; cvk

Þ and the value of the
assignment variable ar;cvk

.
Now we apply the idea of metric adaptation to FSNPC

[2,7]: we replace the similarity measure dðvk;wrÞ by a local

and prototype dependent parametrized general similarity
measure dkr

r ðvk;wrÞ with so-called relevance parameters
kr ¼ ðl1ðrÞ; . . . ; lmðrÞÞ, ljX0,

P
lj ¼ 1. An example is the

scaled Euclidean metric
P

j ljðrÞ � ðv
j � wjÞ

2. Metric adapta-
tion takes place as gradient descent on the cost function
with respect to the relevance paremeters kr (relevance
learning): Dkr ¼ �qlcðvk; cvk

Þ=qkr with

qlcðvk; cvk
Þ

qljðrÞ
¼ �

T

2t2
�
qdkr

r ðvk;wrÞ

qljðrÞ
(8)

using the local cost (2) and subsequent normalization of the
ljðrÞ. In case of k ¼ kr for all r (global parametrized metric)
one gets

qlcðvk; cvk
Þ

qlj

¼ �
X

r

T

2t2
�
qdk
ðvk;wrÞ

qlj

. (9)

We refer to this variant as FSNPC-R.

4. Experiments and results

We successfully applied the FSNPC to a synthetical set
of two overlapping two-dimensional Gaussian classes
results and in a more challenging application to the
well-known prostate cancer set from the National Research
Cancer Institute (NCI) [4].

4.1. FSNPC on synthetical data

First, we apply the FSNPC to a synthetical set of two
Gaussian classes, each consisting of 900 data points in two
dimensions with different variances per data class and an
overlapping region, Fig. 1. We use the FSNPC as a
standalone algorithm with 50 prototypes. The initial fuzzy
labeling is random at nearly around 50% for each class per
prototype corresponding to an initial accuracy of around
46%. The FSNPC algorithm now optimizes in each step
the codebook vector positions and label information.
Because of the fuzzy property the codebook labels can
change during optimization. Indeed the labeling becomes
nearly perfect until the 50th complete step of FSNPC
which leads to a prediction of 92%. To assess the
classification rate we assign prototypes with responsibility
of at least 60% to this class. By this threshold we obtain a
sufficiently good labeling after 300 complete steps. Note,
that codebook vectors which are clearly located within the
region of a data class show very pronounced fuzzy labels of
about 80%–100% for the correct class. Only codebook
vectors close or in the overlapping class region are still
undecided with fuzzy labels of approximately 50% for each
class. It can be seen during training that the codebook
vectors in the overlap region switch frequently their
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