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a b s t r a c t

Over the last decade, support vector machine classifiers (SVMs) have demonstrated superior

generalization performance to many other classification techniques in a variety of application areas.

However, SVMs have an inability to provide an explanation, or comprehensible justification, for the

solutions they reach. It has been shown that the ‘black-box’ nature of techniques like artificial neural

networks (ANNs) is one of the main obstacles impeding their practical application. Therefore,

techniques for rule extraction from ANNs, and recently from SVMs, were introduced to ameliorate this

problem and aid in the explanation of their classification decisions. In this paper, we conduct a formal

review of the area of rule extraction from SVMs. The review provides a historical perspective for this

area of research and conceptually groups and analyzes the various techniques. In particular, we propose

two alternative groupings; the first is based on the SVM (model) components utilized for rule

extraction, while the second is based on the rule extraction approach. The aim is to provide a better

understanding of the topic in addition to summarizing the main features of individual algorithms. The

analysis is then followed by a comparative evaluation of the algorithms’ salient features and relative

performance as measured by a number of metrics. It is concluded that there is no one algorithm that

can be favored in general. However, methods that are kernel independent, produce the most

comprehensible rule set and have the highest fidelity to the SVM should be preferred. In addition, a

specific method can be preferred if the context of the requirements of a specific application, so that

appropriate tradeoffs may be made. The paper concludes by highlighting potential research directions

such as the need for rule extraction methods in the case of SVM incremental and active learning and

other application domains, where special types of SVMs are utilized.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Over the last three decades, data mining and machine learning
techniques have been remarkably successful in extracting inter-
esting knowledge and hidden patterns from the ever growing
databases. In this context, Frawley et al. [1] provides the following
definition for the term ‘pattern’:

Given a set of facts (data) F, a Language L, and some measure of
certainty C, a pattern S is a statement S in L that describes
relationships among a subset Fs of F with certainty C, such that
S is simpler (in some sense) than the enumeration of all facts in
Fs. [1]

Support vector machines and ANNs are among the most
successful machine learning techniques applied in this area
[2–10]. However, the superior performance of SVMs and ANNs

comes with a significant drawback: the language, L, in which they
learn patterns from data is not comprehensible to humans; hence
they do not provide an explanation or a comprehensible
justification for the knowledge they learn. This has been shown
to be one of the main obstacles impeding their practical
application [11–13].

1.1. Rule extraction from SVMs: the motivation

Explanation has been one of the most important topics that
has attracted researchers’ attention, not only in philosophy, where
several theories of explanation have been proposed [14], but also
in the area of artificial intelligence. In particular, since the early
introduction of expert systems, and continuing with case-based
reasoning, explanation is still considered one of the most
important criteria that influence the acceptance of these techni-
ques by end users [15–18]. Similarly, it has also been shown that
the explanation of a classification decision is a crucial require-
ment for the acceptance of black-box models by end users,
especially in areas like medical diagnosis and prognosis
[11–13,19–22]. Therefore, several methods have been introduced
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for rule extraction from ANNs [23], and more recently from SVMs
[22,24–37].

One could argue that rule extraction from SVMs is a narrow
area of research, which is not expected to grow in the future,
given that to date rule extraction from ANNs has not been
particularly successful. However, over the past 6 years, this topic
has attracted an ever increasing number of researchers from a
variety of domains [13,21,22,36–39]. Furthermore, there is a
significantly growing trend in the usage of SVMs and continuing
development of new types of kernels e.g., [40–44]. Explanation
can also help in tasks like image annotation and document
mapping, where SVMs have been widely used in building and
mapping ontologies for the semantic web [45–47]. Discovering
concept drift in active learning by SVMs [48] is also a significant
domain which can benefit from the comprehensibility provided
by rule extraction algorithms.

1.2. Rule extraction from SVMs: the problem

The task of rule extraction from SVMs is to devise rules from
the model (SVM) rather than directly from the data. Therefore, an
explanation of the patterns learned and embedded in their
structure (model support vectors (SVs) and their associated
parameters) is revealed and provided to the end users in a
comprehensible form.

1.3. Overview

In this paper we conduct the first formal review for the area of
rule extraction from SVMs. The survey conceptually groups and
analyzes the literature at a higher level of abstraction, which
outlines differing fundamental approaches to the topic, rather
than summarizing the main features of individual algorithms, as
in [37,49]. This is then followed by a comparative evaluation of
the methods salient features and a benchmark of results
published to date.

The paper is organized as follows: Section 2 provides a brief
introduction to SVMs followed by the review of rule extraction
algorithms in Section 3. Section 4 briefly summarizes the
classification of rule extraction from ANNs, while similarities
between ANNs and SVMs are highlighted in Section 5. In Section
6, we discuss and compare the main features of different
algorithm. Some potential directions for future research are also
highlighted in Section 7, followed by a summary and conclusions
in Section 8. Abstract representations for individual algorithms’
main modules are also provided in Appendix A.

2. Support vector machine classifiers: an overview

Support vector machines belong to the maximum margin
classifier family and are based on the principle of structural risk
minimization (SRM). The SRM principle aims to select a hypoth-
esis function with low capacity from a nested sequence of
functions that simultaneously minimizes both the true error rate
(classification error on unseen examples), and empirical (training
set) error rate [50].

Given the training data set {xi,yi}, i¼1,y,l, yiA{�1,1}, xiARn

(where xi is an input feature vector of dimensionality n, and yi the
corresponding class label), an SVM finds the optimal separating
hyper-plane with the largest margin [50]. Eqs. (1) and (2)
represent the separating hyper-planes in the case of separable
data sets:

xiwþbZþ1 for yi ¼ þ1 ð1Þ

xiwþbr�1 for yi ¼�1 ð2Þ

For the linearly separable case, finding a maximum separating
margin d(d¼2/(JwJ)) is a constrained optimization problem
represented by

minimize 1
2:w:2

subject to yiðwxiþbÞZ1 ð3Þ

2.1. Soft margin linear SVMs

The soft margin hyper-plane can be obtained by relaxing the
optimization problem in (3), through the introduction of xi

(positive slack variable) [51] to allow for errors on the training
set. Including xi, Eqs. (1) and (2) are modified as follows:

xiwþbZþ1�xi for yi ¼ þ1 ð4Þ

xiwþbr�1þxi for yi ¼�1, xiZ0 8i ð5Þ

Introducing the regularization parameter C controls the
tradeoff between the margin maximization and the training
error [51] the optimization problem in (3) is then modified as
follows:

minimize
1

2
:w:2

þC
Xl

i ¼ 1

xi ð6Þ

Subject to yiðwxiþbÞZ1�xi, xiZ0

where
Pl

i ¼ 1 xi the upper bound on the training error and C is a
regularization parameter [51]. The optimization problem in (6) is
called the primal problem. To find an easier solution to this
problem it is transformed to its dual [51], by introducing a, the
Lagrange multipliers (dual variables) which are the fundamental
unknowns in the dual optimization problem [51]. Hence the
problem in (6) becomes

maximize wðaÞ ¼
Xl

i ¼ 1

ai�
1

2

Xl

i,j ¼ 1

aiyiajyj/xi,xjS

such that CZaiZ0 8i,
Xl

i ¼ 1

aiyi ¼ 0 ð7Þ

Solving for a, training examples with non-zero a are called
support vectors (SVs) and the hyper-plane is being completely
defined by the SVs only. As shown in (7), the C parameter
constitutes the upper bound on ai. As a result, three types of
support vectors are characterized based on the values of ai and xi

as follows:

� Support vectors with aioC, those are the SVs which lie outside
the margin d and will be correctly classified.
� Support vectors with ai¼C, and xi41, these SVs lies at the

wrong side of the hyper-plane, and represent errors (will be
misclassified points by the hyper-plane).
� Support vectors with ai¼C, and 0oxir1, these SVs will lie

inside the margin d (i.e., closer than 1/(JwJ) from the
hyper-plane).

2.2. Non-linear SVMs

In the case of non-linear models, SVMs use kernel functions1 to
map non-linearly separable data in the input space xiARn to be

1 A function that enables direct computation of the inner product /F(xi)F(x)S
in feature space as a function of original input points, where F is a non-linear map

from input space to a feature space (inner product) [51].
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