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a b s t r a c t

Graph construction plays a key role on learning algorithms based on graph Laplacian. However, the

traditional graph construction approaches of e-neighborhood and k-nearest-neighbor need to predefine

the same neighbor parameter e (or k) for all samples, which usually suffers from the difficulty of

parameter selection and generally fail to effectively fit intrinsic structures of data. To mitigate these

limitations to a certain extent, in this paper we present a novel and sample-dependent approach of graph

construction, and name the so-constructed graph as Sample-dependent Graph (SG). Specifically, instead

of predefining the same neighbor parameter for all samples, the SG depends on samples in question to

determine neighbors of each sample and similarities between sample pairs. As a result, it not only

avoids the intractability and high expense of neighbor parameter selection but also can more effectively

fit the intrinsic structures of data. Further, in order to show the effectiveness of the SG, we apply it to

the dimensionality reduction based on graph embedding, and incorporate it into the state-of-the-art

off-the-shelf unsupervised locality preserving projection (LPP) to develop the sample-dependent LPP

(SLPP). SLPP naturally inherits the merits of SG and maintains the attractive properties of the traditional

LPP. The experiments on the toy and benchmark (UCI, face recognition, object category and handwritten

digits recognition) datasets show the effectiveness and feasibility of the SG and SLPP with promising

results.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Graph Laplacian based learning has attracted growing interest;
thus many corresponding algorithms have recently been pre-
sented, which widely involve dimensionality reduction (DR)
[1–10], semi-supervised learning [11–15], label propagation
[16–18], clustering [19–23], image match [18,24], etc. For these
algorithms, the graph construction has become a heart. As
claimed in [13], constructing a ‘good’ graph is even more
important than choosing a ‘good’ algorithm. So, it is undoubtedly
necessary and valuable to study graph construction and propose
new construction approaches. In fact, some researchers have
recently dedicated to study the graph construction [25–29]. Maier
and Luxburg [25] showed that k-nearest-neighbor and e-neigh-
borhood graphs can produce extraordinarily different influences
on unsupervised spectral clustering. Jebara et al. [26] presented a
b-matching graph, which is alternative to k-nearest-neighbor
graph. The authors in [27,28] focused on how to combine different
graphs in a way that tends to give heavier weight to a better graph

while authors in [29] presented an in-depth study about the
convergence of graph Laplacians on random neighborhood
graphs. Obviously, these works provide some insight into the
study of graph construction. However, it is still untouched how to
construct a more effective graph depending on samples at hand;
so, in this paper, we attempt to present an approach of sample-
dependent graph construction.

More concretely, the sample-dependent graph construction is
motivated by the following examinations: the determination of
neighbors of each sample, i.e., construction of edges for a graph
plays a key role in the process of graph construction. In traditional
to graph constructions, neighbors of a sample are searched by the
two main approaches of e-neighborhood and k-nearest-neighbor
[4,19]. Both approaches need to predefine the same neighbor
parameter e (or k) for all samples. However, it is not easy to
construct an effective graph for learning tasks by the two
approaches due to the two main reasons:

(i) The parameter is in advance set to the same value for all
samples. Clearly, such setting is not very reasonable because
local structures of each sample usually are different. Thus, the
so-constructed graph generally fails to effectively capture and
fit the intrinsic structures of data.
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(ii) The selection of neighbor parameter is still intractable. It is
well known that up to date, how to select parameter is still
an open problem. Although there are some approaches to
address it, such as cross-validation, they not only are time-
consuming and expensive in a high-dimensional space but
also waste the limited training samples. Especially when the
available training samples are relatively small, such as the
face recognition task with only one sample per person [30],
existing approaches tend to fail.

To mitigate the harassment of the traditional approaches, in this
paper, we propose a sample-dependent approach of graph con-
struction and name the so-constructed graph as Sample-dependent
Graph (SG), which is our first contribution. Different from the
traditional e-neighborhood and k-nearest-neighbor graphs, instead
of setting in advance the same neighbor parameter for all samples,
the SG depends on samples in question to determine the neighbors
of each sample and similarities between sample pairs. More
specifically, for sample xi, if the similarity between it and sample
xj is greater than the mean of similarities between sample xi and all
samples, then xj becomes its neighbor. In other words, the Mean of
Similarities (MS) for xi defines its own similarity neighborhood,
i.e., the hypersphere whose center is xi and radius is MS. So the
similarities of the samples within the hypersphere are greater than
MS and they become automatically its neighbors. Correspondingly,
the entry Wij

S of adjacency matrix WS is set to the similarity value.
Notice that Wji

S is not set to the same value because the defined
similarity function (see its definition in subsection 3.1) varies from
sample to sample and from data to data.

Compared with the traditional e-neighborhood and k-nearest-
neighbor graphs, the SG has some favorable and attractive
properties:

(i) The SG depends on samples in question to determine the
neighbors of each sample and similarities between sample
pairs. Such strategy avoids the stiff criterion as used in the
two traditional graphs, i.e., the same neighbor parameter are
predefined for all the samples.

(ii) Although the SG is not yet parameter-free due to the
similarity parameter, it reduces the number of parameters
compared to the traditional graphs and thus is convenient
and simple to use in learning algorithms. Undoubtedly, this
can reduce the complexity in real applications.

(iii) From the construction definition of the SG, it can be
demonstrated (see Proposition 1 in Section 3 and the toy
experiment in Section 4.1) that its adjacency matrix is
generally asymmetric even if xi and xj are neighbors of each
other, which is generally more reasonable and intuitive for
effectively capturing and fitting the intrinsic structures of
data.

(iv) In the SG, generally, a sample in high-density area has more
neighbors; on the contrary, a sample in low-density area has
relatively less neighbors (this characteristic is simply shown
in the toy experiment in Section 4.1), which reflects certain
statistics property.

(v) There are some similarities between the SG and the two
traditional graphs, but the SG is not their special case (see (B)
in Section 3.2).

(vi) The SG is very general. It can potentially be adapted to many
learning algorithms based on graph Laplacian.

As a construction strategy of graph, the proposed approach can
potentially be applied to many learning algorithms based on
graph Laplacian; however, in this paper, we just concern on an
application of SG to DR to demonstrate the effectiveness of our

strategy mainly due to its attractive properties and popularity.1

In fact, many DR algorithms based on graphs [1,2,4,10,20,22,23,
31–44] have recently been proposed, typically like the locality
preserving projection (LPP) [1], neighborhood preserving embed-
ding (NPE) [33], Bayesian tensor analysis (BTA) [38,39], local
coordinates alignment (LCA) [40], etc. Their implementations
share a common routine, i.e., first construct an affinity graph and
then embed it into an objective function to optimize the function
for preserving some (locally geometrical or structural) properties
of original high-dimensional space; in such a way, it get a
projection matrix for dimensionality reduction. We follow the
routine as well. Specifically, we incorporate the SG into the state-
of-the-art off-the-shelf unsupervised LPP to develop the sample-
dependent LPP (SLPP), which is our second contribution.

SLPP also has some attractive properties:

(i) SLPP naturally inherits all merits of the SG, as mentioned in
(i)–(vi) above.

(ii) It is worth to point out that though the adjacency matrix of
SG is generally asymmetric, the Laplacian matrix induced
from it is still symmetric (see Proposition 2 in Section 3).

(iii) SLPP shares some good characteristics of LPP, such as
avoidance of the ‘‘out-of-sample’’ problem [21].

(iv) The SG can be directly incorporated into the off-the-shelf LPP,
hence does not bring much more computational complexity
compared to LPP.

The rest of this paper is organized as follows: Section 2 briefly
reviews the traditional approaches of graph construction, and
takes LPP as an example to introduce unsupervised DR algorithms
based on graph embedding. Section 3 firstly presents the novel SG,
demonstrates its property and then develops the unsupervised
SLPP algorithm. Section 4 performs the experiments to evaluate
the effectiveness and feasibility of the SG and SLPP. Section 5 gives
the conclusion remarks and discusses the future work.

2. Related works

2.1. Traditional graph construction

Given a set of n samples X¼{x1,y, xn}, xiARD, a weighted graph
G¼{V, E, W} can be constructed, where V corresponds to the sample
points in set X, E denotes the edge set between the sample pairs
and entry Wij of the adjacency matrix and W denotes similarity
between xi and xj. The construction process of graph G can typically
be decomposed into two steps: (1) construction of edges and (2)
calculation of weight value for each edge. Step (1) mainly includes
the two categories of e-neighborhood and k-nearest-neighbor [19].

e-neighborhood: xi and xj are linked by an edge if 99xi�xj99
2oe

where 99 � 99 is the usual Euclidean norm in RD and e is a local
threshold parameter, which controls the size of a local neighborhood.

k-nearest-neighbor: xi and xj are linked by an edge if xi is among
k nearest neighbors of xj or xj is among k nearest neighbors of xi.

And at the same time, for Step (2), there are three frequent
approaches:

(i) Heat kernel

Wij ¼
expð�99xi�xj99

2
=2p2Þ, if xi and xj are neighbors

0 otherwise

(
ð1Þ

where p is the width parameter of the heat kernel.

1 The effect of proposed strategy on other learning algorithms based on graph

Laplacian will be across-the-board demonstrated and exploited in the future work.
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