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a b s t r a c t

It is shown that the application of a form of spike time dependent plasticity (STDP) within a highly

recurrent spiking neural net based upon the LSM leads to an approximate convergence of the synaptic

weights. Convergence is a desirable property as it signifies a degree of stability within the network.

An activity link L is defined which describes the link between the spiking activity on a connection and

the weight change of the associated synapse. It is shown that under specific conditions Hebbian and

Anti-Hebbian learning can be considered approximately equivalent. Also, it is shown that such a

network habituates to a given stimulus and is capable of detecting subtle variations in the structure of

the stimuli itself.

& 2008 Elsevier B.V. All rights reserved.

1. The liquid state machine

The liquid state machine (LSM) concept was introduced by
Maass et al. [10]. The LSM in one of its basic form consists of a
pool of highly recurrently connected spiking leaky integrate and

fire (LIF) neurons.
This pool typically receives a spiking input ninputðtÞ from a pool

of input neurons that are connected to a selection of neurons
within the LSM. The LSM acts as a medium through which the
input can be expressed in a higher dimensional form. A readout
neuron which receives a connection from all of the neurons within
the LSM is then able to be taught, using a learning algorithm on
the connections from the pool, to perform some computable
function FðninputðtÞÞ on the input, with the strong limiting factor
being the size of the LSM, see [1].

1.1. A typical implementation

Analyses of the computational qualities of the LSM typically
involve the use of a randomly generated layer of LIF neurons, as
shown in Fig. 1, which facilitate the projection of an input into
higher dimensions. An input spike train ninputðtÞ is presented to the
‘liquid’ layer. Learning of a particular function FðninputðtÞÞ is then
typically accomplished by altering the synaptic weights that
connect a readout pool of neurons to this liquid layer. For example,
using some learning algorithm it is, in some cases, possible to

train a pool of readout neurons to extract from the liquid layer,
the information about the input stream ninputðtÞ up to some time
into the past t, that is required to compute a given function
Fðninputðt � tÞÞ for different values of t. The difference in
implementation in this paper is that unlike the LSM, which
typically has static weights in the recurrent part of the network,
the effect of implementing a learning regime in which the
synaptic weights can be modified, in a way that is influenced by
the firing activity within the network, is investigated.

2. Spike time dependent plasticity learning

Spike time dependent plasticity or STDP learning rules are
based upon Hebb’s postulate, see [6]. Suppose that a neuron npost

receives an input connection from neuron npre. Consider, that if
the pre-synaptic neuron npre fires before the post-synaptic neuron
npost , then the synaptic weight on the link between them is
strengthened. In this case npre can be thought of as contributing to
the firing of npost , so its influence is encouraged. If the firing
sequence is reversed and npre fires after npost then the connection
is weakened.

The case when the synaptic weight is strengthened if npost fires
before npre and weakened if the firing is reversed is known as Anti-
Hebbian STDP. The delay between the firing time tpre of npre and
the firing time tpost of npost is denoted as tdelay ¼ tpre � tpost and is
the determining factor in how large the synaptic weight change
should be. A comprehensive analysis of STDP learning can be
found in [2].
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2.1. The STDP learning window functions

In this paper, an asymmetric Hebbian learning function is used,
the form of which can be seen in Fig. 2. This is a typical learning
function which increases those synaptic weights whose pre-
synaptic neuron fires just before its post-synaptic neuron and
weakens the synaptic weight if the post-synaptic neuron fires
before the pre-synaptic neuron. The amount of the modification is
determined according to the product of the learning window
function SðtdelayÞ and some learning rate f.

An Anti-Hebbian learning window function is one that
operates in reverse to the Hebbian version. In this implementa-
tion, for Anti-Hebbian STDP �f is used for the learning rate
instead of f. It should be noted that there are different forms of
STDP learning, see Izhikevich [8] which shows that BCM (Bienen-
stock, Cooper, Munro) learning can be derived from STDP learning
under certain circumstances.

2.2. Weight change and normalisation

Consider a neuron Y within a recurrent neural network, similar
to Fig. 1, that receives inputs from neurons X1; . . . ;Xk with
respective synaptic weights w1; . . . ;wk. W is the weight vector
associated with the input of Y , W ¼ ðw1; . . . ;wkÞ. The individual
synaptic weights that comprise W are modified by two processes;
a Hebbian weight update that is calculated for w1; . . . ;wk, and a
normalisation procedure which ensures that the input synapses to
a neuron have a constant norm, therefore this a competitive
Hebbian process, see [4]. The normalisation is applied to W only
after all weights w1; . . . ;wk have had the Hebbian weight update
procedure applied. Network activity is simulated in 0.0002 s time-
steps and weights are updated every 0.5 s, using the firing activity
of the previous 0.5 s, for the duration of the simulation. These
update procedures are performed on the weight vectors of each
neuron of the network at each time-step. Suppose R is the norm of
the original unmodified weight vector W. For a neuron Xi firing at

time ti and a neuron Y firing at time t, we get

wi :¼wi þfSðti � tÞ for i ¼ 1; . . . ; k

W :¼R �W=kWk

2.3. Activity link

In order to describe better the weight change brought about by
the Hebbian update, and as a means for describing the link
between the spiking activity on a synaptic connection and the
weight change of the synapse associated with that connection, the
activity link Lða; bÞ is defined where a and b are spike trains.
Suppose that a has spike times t1; . . . ; tm and b has spike times
t1; . . . ; tn, then we can define the following:

Lða; bÞ ¼
Xm

i :¼ 1

Xn

j¼1

Sðti � tjÞ

Consider neuron Y from the previous section. Suppose that the
spike trains of X1; . . . ;XK are x1; . . . ; xk and Y has a spike train y

over an interval I. The update rules for the Hebbian learning
followed by the normalisation update are

wi :¼wi þfLðxi; yÞ for i ¼ 1; . . . ; k

W :¼R �W=kWk

3. LSM generation parameters

All experiments are performed using CSIM, see [7], under
MATLAB. CSIM allows for the simulation of many types of neuron
and synapse models, and enables the creation of pools of
recurrently connected neurons.
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Fig. 1. A basic LSM consisting of LIF neurons with spiking input neuron ninput . Each

neuron is located on the integer points of a 3-D column.
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Fig. 2. The form of the learning window function used to calculate the weight

change due to STDP. The actual weight update value is given by the product of this

learning function SðtdelayÞ and the learning rate f. The time scale of the learning

window function is such that the peak occurs at a distance of 2:5 ms from the post-

synaptic firing time. This value was chosen in accordance with the finding by

Gerstner in [4] that the learning window function maximum SðtdelayÞmax should be

in the range d=2pSðtdelayÞmaxpd, where d is the rise time of a post-synaptic spike,

typically less than 5 ms. STDP is a biologically derived learning method, but there

are many unanswered questions as to what actually happens when STDP is

applied, especially in the context of recurrent spiking neural networks. An axonal

time-delay is incorporated into a synaptic delay on the transmission of a spike to

the receiving neuron. This synaptic time-delay was drawn from a Gaussian

distribution with a mean of 0:0015 s for excitatory-to-excitatory neuron connec-

tions, and a mean of 0:0008 s for all other connections, and with a standard

deviation of 10% of the mean.
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