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a b s t r a c t

This paper presents a model of complex-valued neuron (CVN) for real-valued classification problems,

introducing two new activation functions. In this CVN model, each real-valued input is encoded into a

phase between 0 and p of a complex number of unity magnitude, and multiplied by a complex-valued

weight. The weighted sum of inputs is then fed to an activation function. Both the proposed activation

functions map complex values into real values, and their role is to divide the net-input (weighted sum)

space into multiple regions representing the classes of input patterns. Gradient-based learning rules are

derived for each of the activation functions. The ability of such CVN is discussed and tested with two-

class problems, such as two- and three-input Boolean problems, and the symmetry detection in binary

sequences. We show here that the CVN with both activation functions can form proper boundaries for

these linear and nonlinear problems. For solving n-class problems, a complex-valued neural network

(CVNN) consisting of n CVNs is also studied. We defined the one exhibiting the largest output among all

the neurons as representing the output class. We tested such single-layered CVNNs on several real

world benchmark problems. The results show that the classification ability of single-layered CVNN on

unseen data is comparable to the conventional real-valued neural network (RVNN) having one hidden

layer. Moreover, convergence of the CVNN is much faster than that of the RVNN in most cases.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

Complex numbers are used to express real-world phenomena
like signal amplitude and phase, and to analyze various mathe-
matical and geometrical relationships. In order to directly process
complex values by artificial neural networks, the complex-valued
neural network (CVNN) as well as the complex back-propagation
(CBP) algorithm have been developed [3,7,8,10,16]. The properties
of the CVNN and CBP have been studied [5,11], and the CVNN is
shown to be powerful in applications such as adaptive radar
image processing [15], and optical image processing [2,4]. Further
extension to multidimensional values has been attempted as well
[13]. Some researchers recently have also applied CVNN on real-
valued classification problems [1,9].

We are aware of two approaches for the application of CVNN to
real-valued classification problems. In Ref. [9], each real-valued
input is phase encoded between 0 and p/2 of unity magnitude

complex number, so that the complex-valued neuron (CVN) can
receive complex-valued inputs. The role of CVN is two-fold,
aggregation and threshold operations. The former role is to
aggregate the inputs multiplied by the connection weights, and
the latter is to determine the class label by using an activation
function. They showed that the CVN is successful in classifying all
two-input Boolean functions, and 245 among 256 three-input
Boolean functions. The learning algorithm, however, includes a
reciprocal of partial derivatives. When the partial derivatives
approach zero and the reciprocals become very large, the learning
process may become unstable, especially when real world
problems are evaluated. In a recent work [1], a multilayer feed-
forward architecture of multivalued neuron is proposed. The
model encodes real-valued inputs by phases between 0 and 2p of
unity magnitude complex numbers, and determines the class
label by the complex-valued output, based on the output’s vicinity
to the roots of unity. It has been shown that the model was able to
solve the parity n and two spirals problems, and could perform
better in ‘‘sonar’’ benchmark and the Mackey–Glass time series
prediction problems.

In this paper, we propose two activation functions that map
complex values to real-valued outputs. The role of the activation
functions is to divide the net-input (sum of weighted inputs)
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space into multiple regions representing the classes. Since the
net-input of a CVN is a complex number, it is a two-dimensional
space. Both the proposed activation functions are differentiable
with respect to real and imaginary parts of the net-input. As a
result, a gradient-based learning rule can be derived. To present
complex-valued inputs to the CVN, real-valued inputs are phase
encoded between 0 and p. We will show in the following sections
that such a CVN is able to solve linear and nonlinear classification
problems such as two-input Boolean functions, 253 among 256
three-input Boolean functions, and symmetry detection in binary
sequences.

To solve n-class problems, we considered a single-layered
CVNN (without hidden layer) consisting of n CVNs described
above, and formulated the learning and classification scheme. The
single-layered CVNN has been applied and tested on various real
world benchmark problems. Experimental results showed that the
generalization ability of the single-layered CVNN is comparable to
the conventional two-layered (with one hidden layer in addition
to input and output layer) real-valued neural network (RVNN). It
is noteworthy that in the proposed single-layered CVNN, the
architecture selection problem does not exist. In the multilayered
RVNNs which are considered as universal approximators [6], in
contrast, the architecture selection is crucial to achieve better
generalization and faster learning abilities.

The remainder of the paper is organized as follows. In
Section 2, we discuss the model of CVN along with the proposed
activation functions. In Section 3, we develop a gradient-based
learning rule for training the CVN. In Section 4, we discuss the
ability of the single CVN for some binary-valued classification
problems. In Section 5, performances of the single-layered CVNN
consisting of multiple CVNs are compared to those of the
conventional two-layered RVNN on some real world benchmark
problems. Finally, Section 6 gives a discussion and concluding
remarks.

2. Complex-valued neuron (CVN) model

Since the CVN processes complex-valued information, it is
necessary to map real input values to complex values in order to
solve real-valued classification problems. After such mapping, the
neuron processes information in a way similar to the conventional
neuron model except that all the parameters and variables are
complex-valued, and computations are performed according to
complex algebra. As illustrated in Fig. 1, the neuron, therefore, first
sums up the weighted complex-valued inputs and the threshold
value to represent its internal state for the given input pattern,
and then the weighted sum is fed to an activation function which
maps the internal state (complex-valued weighted sum) to a real
value. Here, the activation function combines the real and
imaginary parts of the weighted sum.

2.1. Phase encoding of the inputs

This section explains how the real-valued information is
presented to a CVN. Consider (X, c) as an input example, where
XARm represents the vector for m attributes of the example, and
cA{0,1} denotes the class of the input pattern. We need a mapping
Rm-Cm to process the information with the CVN. One such
mapping for each element of the vector X can be done by the
following transformation:

Let x 2 ½a; b�; where a; b 2 R; then j ¼
pðx� aÞ

ðb� aÞ
(1)

and

z ¼ eij ¼ cos jþ i sin j (2)

Here i ¼
ffiffiffiffiffiffiffi
�1
p

. Eq. (1) is a linear transformation which maps
xA[a, b] to jA[0, p]. Then by Euler’s formula, as given by Eq. (2), a
complex value z is obtained. When a real variable moves in the
interval of [a, b], the above transformation will move the complex
variable z over the upper half of a unit circle. As shown in Fig. 2,
the variation on a real line is thus now the variation of phase j
over the unit circle.

Some facts about the transformation are worth noting. Firstly,
the transformation retains relational property. For example, when
two real values x1 and x2 hold a relation x1px2, the corresponding
complex values have the same property in their phases as such,
phase(z1)pphase(z2). Secondly, the spatial relationship among the
real values is also retained. For example, two real values x1 and x2

are farthest from each other when x1 ¼ a and x2 ¼ b. The
transformed complex values z1 and z2 are also farthest from each
other as shown in Fig. 2. Thirdly, the interval [0,p] is better than
the interval [0, 2p] as we loose the spatial relationship among the
variables in the latter. For example, x1 ¼ a and x2 ¼ b will be
mapped to the same complex value since ei0 ¼ ei2p. It is worth
noting that interval [0, p/2] can also be used for phase encoding.
However, experiments presented in Section 5 and Table 9 show
that learning convergence is faster in the case of the interval [0,p].
Finally, the transformation can be regarded as a preprocessing
step. The preprocessing is commonly used even in RVNNs in order
to map input values into a specified range, and so on. The
transformation in the proposed CVN, therefore, does not increase
any additional stage for the process with neural networks. In fact,
the above transformation does not loose any information from the
real values; rather it lets a CVN process the information in a more
powerful way.
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Fig. 1. Model of a complex neuron. The sign
P

sums up the weighted inputs

wjxjð1pjpmÞ and the bias y. f C!R is an activation function that maps the complex-

valued internal state to a real-valued output y.
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Fig. 2. Phase encoded inputs. When a real value x moves in the interval [a, b],

corresponding complex value moves over the upper half of unit circle. x ¼ a, and

x ¼ b are mapped by ei0, and eip , respectively.
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