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a b s t r a c t

In this paper, we propose three decomposition techniques for linear programming (LP) problems:

(1) Method 1, in which we decompose the variables into the working set and the fixed set, but we do not

decompose the constraints, (2) Method 2, in which we decompose only the constraints and (3) Method

3, in which we decompose both the variables and the constraints into two. By Method 1, the value of the

objective function is proved to be non-decreasing (non-increasing) for the maximization (minimization)

problem and by Method 2, the value is non-increasing (non-decreasing) for the maximization

(minimization) problem. Thus, by Method 3, which is a combination of Methods 1 and 2, the value of

the objective function is not guaranteed to be monotonic and there is a possibility of infinite loops. We

prove that infinite loops are resolved if the variables in an infinite loop are not released from the

working set and Method 3 converges in finite steps. We apply Methods 1 and 3 to LP support vector

machines (SVMs) and discuss a more efficient method of accelerating training by detecting the increase

in the number of violations and restoring variables in the working set that are released at the previous

iteration step.

By computer experiments for microarray data with huge input variables and a small number of

constraints, we demonstrate the effectiveness of Method 1 for training the primal LP SVM with linear

kernels. We also demonstrate the effectiveness of Method 3 over Method 1 for the nonlinear LP SVMs.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

Support vector machines (SVMs) [36,35] are widely used for
pattern classification. But in training an SVM we need to solve a
quadratic programming problem with the number of variables
equal to the number of training data. Thus, to speed up training
for a large problem, we usually use a decomposition technique, in
which the original variables are divided into working variables
and fixed variables and a small problem with the working
variables is iteratively solved [23,24]. A special case of the
decomposition technique is the sequential minimal optimization
(SMO) with the working set size of two [25]. The convergence of
the decomposition technique for SVMs is theoretically proved
[23,24,21,18,30] and there are many discussions on working set
selection to speed up convergence of SMO [18,8,6,9] and general
decomposition techniques with working set sizes larger than two
[16,13,20,14]. By the decomposition techniques training of SVMs
for large-scale problems is considerably speeded up.

As a variant of SVMs, linear programming SVMs (LP SVMs), in
which the quadratic objective functions are replaced with linear

objective functions, have been proposed [27,17,38]. In training LP
SVMs, we need to solve LP problems with the number of variables
more than three times the number of training data. But until
now, there are not so many discussions on the decomposition
techniques for LP SVMs. In [5], a decomposition technique is
proposed, in which only a part of linear constraints are used for
linear SVMs. This method confirms monotonic convergence of the
objective function and is useful for the problems with a large
number of constraints but a small number of variables. In [32],
decomposition techniques for SVMs are extended to LP SVMs.
Because direct implementation of the decomposition techniques
leads to infinite loops, training speedup is done by modifying
working set selection when the number of violations of com-
plementarity conditions increases.

In this paper we propose three decomposition techniques for
LP programs: Method 1, in which variables are divided into
working variables and fixed variables but constraints are all used;
Method 2, in which constraints are divided into working
constraints and fixed constraints but variables are all used;
Method 3, in which variables and constraints are divided into
working and fixed variables and constraints, respectively. We
prove that in Method 1, the values of the objective function
are non-increasing for a minimization problem during training.
While in Method 2 the values of the objective function are
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non-decreasing for a minimization problem. Therefore, for the
combined method, Method 3, the values of the objective function
are not monotonic and there is a possibility of infinite loops. We
prove that if the variables in an infinite loop are kept in the
working set during training, Method 3 converges in finite steps.
We apply Methods 1 and 3 to LP SVMs and for Method 3, we
discuss more efficient method for training. In computer experi-
ments, we show that Method 1 can accelerate training of linear LP
SVMs for microarray data, and Method 3 for training LP SVMs with
a large number of training data.

The structure of the paper is as follows. In Section 2, we
propose three decomposition techniques and clarify relations of
the proposed decomposition techniques with that for SVMs. Then
in Section 3, we apply these methods to LP SVMs and in Section 4,
we demonstrate the effectiveness of the proposed methods using
some benchmark data sets. Finally in Section 5 we conclude our
work.

2. Decomposition techniques

If the size of a problem is very large, it is natural to consider
dividing the problem into small sub-problems and solving the
sub-problems iteratively. For an optimization problem, one way is
to divide the problem into a working sub-problem and a fixed
sub-problem, solve the working sub-problem, re-divide the
problem into a working sub-problem and a fixed sub-problem,
and iterate the procedure until the solution is obtained. However,
to obtain the solution by this method, the objective function
needs to be monotonic during the training process. If not,
convergence in finite steps is required.

In the following, we discuss three decomposition techniques
for an LP problem.

2.1. Formulation

We consider the following problem, which is a generalized
version of an LP SVM:

minimize cTxþ dT
n (1)

subject to AxXb� n; xX0; nX0, (2)

where c is an m-dimensional constant vector, d is an
M-dimensional vector and d40, A is an M �m constant matrix,
b is an M-dimensional positive constant vector, and n is a slack
variable vector to make x ¼ 0 and n ¼ b be a feasible solution.
Therefore, the optimal solution always exists.

Introducing an M-dimensional slack variable vector u (2)
becomes

Ax ¼ bþ u� n; xX0; uX0; nX0. (3)

The dual problem of (8) and (9) is as follows:

maximize bT z (4)

subject to AT zþ v ¼ c; zþw ¼ d,

vX0; zX0; wX0, (5)

where z is an M-dimensional vector, v is an m-dimensional slack
variable vector and w is an M-dimensional slack variable vector.

The optimal solution ðx�; n�;u�; z�; v�;w�Þ must satisfy the
following complementarity conditions:

x�i v�i ¼ 0 for i ¼ 1; . . . ;m, (6)

x�i w�i ¼ 0; z�i u�i ¼ 0 for i ¼ 1; . . . ;M. (7)

Now solving the primal or dual problem is equivalent to solving

Ax ¼ bþ u� n; xX0; uX0; nX0,

AT zþ v ¼ c; zþw ¼ d,

zX0; wX0; vX0,

xi vi ¼ 0 for i ¼ 1; . . . ;m,

xi wi ¼ 0; zi ui ¼ 0 for i ¼ 1; . . . ;M.

Here, we call xi active if xi40 and inactive if xi ¼ 0. Likewise, the
ith constraint is active if ui ¼ 0 and inactive if ui40. Notice that
even if we delete inactive variables and constraints, we can obtain
the same solution as that of the original problem.

By the primal–dual interior-point method, the above set of
equations is solved. By the simplex method, if we solve the primal
or dual problem, the primal and dual solutions are obtained
simultaneously [7]. Therefore, either by the primal–dual interior-
point method or the simplex method, we obtain the primal and
dual solutions.

2.2. Three decomposition techniques

Now we consider the following three decomposition methods
to solve (1) and (3).

Method 1, in which, a subset of the variables in x is optimized
using all the constraints, while fixing the remaining variables. Let
the set of indices of the subset be Wv and the remaining subset be
Fv, where Wv \ Fv ¼ ; and Wv [ Fv ¼ f1; . . . ;mg. Assuming
xi ¼ 0 ði 2 FvÞ, the original problem given by (1) and (3) reduces
as follows:

minimize
X
i2Wv

ci xi þ dT
n (8)

subject to
X
j2Wv

Aijxj ¼ bi þ ui � xi for i ¼ 1; . . . ;M,

xiX0 for i 2Wv; uX0; nX0. (9)

The dual problem of (8) and (9) is as follows:

maximize bT z (10)

subject to
XM
j¼1

Aji zj þ vi ¼ ci; viX0 for i 2Wv,

zþw ¼ d; zX0; wX0. (11)

Therefore from (10) and (11), if we solve (8) and (9), in addition
to the solution of the primal problem, we obtain the solution of
the dual problem except for vi ði 2 FvÞ. Namely, except for
xivi ¼ 0 ði 2 FvÞ, the complementarity conditions given by (6) and
(7) are satisfied. Using the first equation in (5) for i 2 Fv, we can
calculate vi ði 2 FvÞ. Because we assume that xi ¼ 0 ði 2 FvÞ, if
viX0 ði 2 FvÞ, vi satisfy the constraint and the obtained primal
solution is optimal. But if some of vi are negative, the obtained
solution is not optimal.

If the obtained solution is not optimal, we move the indices
associated with inactive variables from Wv to Fv, move, from Fv to
Wv, the indices associated with the violating variables, and iterate
the previous procedure.

By this method, the optimal solution at each iteration step is
obtained by restricting the original space

fxjAxXb� n;xX0; nX0g (12)

to

fxjAxXb� n; nX0; xiX0 for i 2Wv; xi ¼ 0

for i 2 Fvg. (13)

If the solution is not optimal, we repeat solving the sub-problem
with the non-zero xi ði 2WvÞ and with the violating variables
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