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Abstract

Due to their excellent performance, support vector machines (SVMs) are now used extensively in pattern classification applications. In

this paper we show that the standard sigmoidal kernel definition lacks the capability to represent the family of perceptrons, and we

propose an improved SVM with a sigmoidal kernel called support vector perceptron (SVP). We show by means of both synthetic and real

world data sets that the proposed SVP is able to provide very accurate results in many classification problems, providing maximal margin

solutions when classes are separable, and also producing very compact architectures comparable to classical multilayer perceptrons.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction: support vector machines with sigmoidal

kernels

Recently support vector machines (SVMs) have been
extensively used by the machine learning community
because they effectively deal with high dimensional data,
provide good generalization properties and define the
classifier architecture in terms of the so-called support
vectors (SVs), once the hyperparameters are set (usually by
means of a cross-validation procedure) [14,17]. Nonlinear
SVMs are obtained by mapping input patterns to a feature
space F, such that all operations comprising inner products
in F can be computed using a kernel function. Most
successful SVMs use Gaussian kernels (yielding networks
analogous to radial basis functions), while sigmoid kernels
(potentially leading to single-hidden-layer perceptrons) are
seldom successfully used in real applications. Sigmoid
kernels may lead to kernel matrices which are non-positive-
semi-definite (PSD) [14], and PSD kernel matrices are
required by the SVM framework to obtain the solution by

means of quadratic programming (QP) techniques. Some
authors have tried to circumvent this problem by either
developing linear approximations to the sigmoidal kernel
[3] (with some additional drawbacks) or by implementing
special solver methods robust to non-PSD kernel matrices.
Among the latter, sequential minimal optimization (SMO
[13]) decomposition methods are used in [9] to solve non-
convex dual problems, leading to the successful, robust and
popular SVM software implementation known as LibSVM
[8], which is always able to provide a solution with sigmoid
kernels. In the experimental part of this paper we will use
LibSVM as a reference method for benchmarking our
proposed algorithm, since other software implementations
sometimes fail to provide a solution, possibly because they
do not take into account the case of non-PSD kernel
matrices, often encountered in practice when using sigmoid
kernels. LibSVM authors have explicitly taken into
account these non-PSD situations, as explained in [9],
and therefore their LibSVM package seems to be robust
when working with the sigmoid kernel.
We have observed that the average performance

obtained with the sigmoidal kernel was systematically
worse than that obtained with Gaussian kernels. By simple
inspection, it can be directly observed that sigmoid-
SVMs are actually working with a subset of all possible
perceptrons. Before discussing this kernel and its
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limitations, let us briefly recall the foundations of SVMs.
Consider a binary classification problem defined by a set of
labelled input patterns fxi; yig

N
i¼1 with xi 2 RP and

yi 2 f�1;þ1g. The SVM first projects the input data onto
a (usually high-dimensional) space, F, by means of a
nonlinear projection /ð�Þ, in a way that inner products
between projected vectors can be computed by means of a
kernel function kðxi;xjÞ ¼ /ðxiÞ

T/ðxjÞ (the so-called ‘kernel
trick’). Then the SVM finds a maximal margin linear
classifier in F, f ðxÞ ¼ signðwT/ðxÞ þ bÞ, where w is the
solution to

min
w;xi

1

2
wTwþ C

XN

i¼1

xi

( )

s:t:
yiðw

T/ðxiÞ þ bÞ � 1þ xiX0; 8i ¼ 1; . . . ;N;

xiX0; 8i ¼ 1; . . . ;N;

����� ð1Þ

where xi are positive slack variables introduced to deal with
non-separable problems and C is the penalization for
patterns incorrectly classified or inside the margin. The
solution to the optimization problem in (1) is a linear
combination of S patterns called SVs: w ¼

PS
i¼1 yiai/ðxiÞ.

Then the classifier (before taking the sign) becomes, for the
sigmoid case

oðxjÞ ¼
XS

i¼1

yiai/
T
ðxiÞ/ðxjÞ þ b

¼
XS

i¼1

bi tanhðv
T
i xj þ d0Þ þ b, ð2Þ

where bi ¼ yiai, vi ¼ gxi, and g and d0 are the kernel
hyperparameters, such that (2) is equivalent to a MLP with
a hidden layer of S neurons. In the standard SVM g and d0
are obtained by cross-validation, and the same values are
used for all network nodes, which is a severe limitation.
This will prevent the sigmoid-SVM from having the same
representational potential as a true MLP. Furthermore,
not all ðg; d0Þ parameter combinations lead to a valid kernel
function, sometimes deriving in computational problems
since we obtain non-PSD kernel matrices. To avoid this, it
is recommendable to use positive values for g and negative
values for d0, as discussed in [9], a restriction which further
limits the capability of the sigmoid-SVM.

In the following section we present the support vector
perceptron (SVP) model, which solves these drawbacks by
training the SVM without any restrictions on the hyper-
parameter values, and we also provide a training SVP
algorithm which is free from the non-PSD problem of QP-
solver-based methods.

2. The SVP algorithm

In the standard SVM formulation we have little control
over the kernel hyperparameters once the QP optimization
starts, since they are fixed beforehand. We therefore need a
more flexible scheme to be able to select good kernel

hyperparameters as learning progresses, and without the
restriction di ¼ d0;8i. We propose to take advantage of a
previously developed method to grow semiparametric
models [10,11]. Under this paradigm, the size of the
classifier can be effectively controlled by introducing a
predefined model in the formulation of the SVM problem,
and updating it according to some additional criteria, to be
discussed later. Let us assume that the hyperplane defined
by w can be approximated by a linear combination of

several1 mapped patterns /ðziÞ, i.e., w ’
PR

i¼1 bi/ðziÞ, s.t.

the classifier (before taking the sign) becomes oðxjÞ ¼PR
i¼1 bi/

T
ðziÞ/ðxjÞ þ b ¼

PR
i¼1 bikðzi;xjÞ þ b. With this ap-

proximation, the optimization in (1) is transformed into the
following regularized iterative weighted least-squares
(IWLS) minimization

min
b;b

1

2
bTKzbþ

1

2

XN

i¼1

aie
2
i

( )
;

ai ¼

0; eiyio0;

M; 0peiyipC=M ;

C

eiyi

; eiyi4C=M;

8>>>><
>>>>:

ð3Þ

where ðKzÞij ¼ kðzi; zjÞ, ei ¼ yi � oi, M is a large regulariz-

ing constant, usually set to 109 and ai are weighting values
whose precise computation has already been derived in
[10]. Briefly, these weights ai serve to transform the
L1-norm functional in (1) (the error term appears as a
sum of xi terms) into a least squares functional (3) (where
the errors have been converted to L2-norm, and they
appear as a sum of weighted squared errors of the form

aie
2
i ). To solve the minimization in (3), we first rewrite the

error term in matrix form, to obtain

min
b;b

1

2
bTKzbþ

1

2
eTDae

� �
, (4)

where Da ¼ diagfaig, e ¼ y� ðKbþ bÞ, ðKÞi;j ¼ kðxi; zjÞ,

y ¼ ½y1; . . . ; yP�
T, and e ¼ ½e1; . . . ; eP�

T. We have now to
compute partial derivatives with respect to b and b and
make them equal to zero:

q
qb

1

2
bTKzbþ

1

2
eTDae

� �
¼ Kzb� KTDaðy� ðKbþ bÞÞ ¼ 0, ð5Þ

q
qb

1

2
bTKzbþ

1

2
eTDae

� �
¼ �1TDayþ 1TDaKbþ 1TDa1b ¼ 0, ð6Þ

where 1 ¼ ½1; . . . ; 1�T. After reordering terms and joining
those respectively depending on b and b, we obtain a
system of two equations linear in the unknowns ðb; bÞ, that
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1R is usually much smaller than the number of support vectors S, as will

be shown in the experimental section.
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