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• Calibrated the extrinsic parameters of camera–laser systems without overlap.
• Proposed two methods of calculating an initial solution.
• Proposed three different cost functions for non-linear optimization.
• Analyzed poses which must be considered while capturing data.
• Evaluated the accuracy of the proposed methods using both synthetic and real data.
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a b s t r a c t

This paper presents a practical means of extrinsic calibration between a camera and a 2D laser sensor,
without overlap. In previous calibration methods, the sensors must be able to see a common geometric
structure such as a plane or a line. In order to calibrate a non-overlapping camera–laser system, it is
necessary to attach an extra sensor, such as a camera or a 3D laser sensor, whose relative poses from both
the camera and the 2D laser sensor can be calculated. In this paper, we propose two means of calibrating
a non-overlapping camera–laser system directly without an extra sensor. For each method, the initial
solution of the relative pose between the camera and the 2D laser sensor is computed by adopting a
reasonable assumption about geometric structures. This is then refined via non-linear optimization, even
if the assumption is not met perfectly. Both simulation results and experiments using actual data show
that the proposed methods provide reliable results compared to the ground truth, as well as similar or
better results than those provided by conventional methods.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We study the calibration of multiple-sensor systems, especially
those which consist of cameras and 2D laser sensors. Cameras
and 2D laser sensors are the most commonly used sensors
for robotic applications. They capture projected images and
depth information, respectively, in their fields of view. Various
applications using them have been studied for many decades.

Given that they have nearly opposite strengths andweaknesses,
the combination of a camera and a 2D laser sensor is an
effective arrangement. Although fusion sensors of cameras and
2D laser sensors are mainly used based on the assumption of 2D
space, the unknown-depth limitation of cameras is complemented
by 2D laser sensors. Ortín et al. [1] scanned walls using a
2D laser sensor to transform their textures into a common
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viewpoint. Biber et al. [2] computed the 3D geometries of indoor
environments using a 2D laser sensor and textures imported
from omnidirectional images. Luo et al. [3] combined a stereo-
camera and a 2D laser sensor to build an indoor map containing
visual signs. Gallegos and Rives [4] detected line features from
omnidirectional images and estimated their 3D positions using
scan data. Choi et al. [5] used image features to solve the ambiguity
associated with laser-based motion estimations. Zhang et al. [6]
detected line features from both images and scan data to remove
noisy line segments. Several researchers tried to use the fusion
sensor in 3D space. Newman et al. [7] detected closed loops
by comparing images while a 2D laser sensor scanned local 3D
structures for 3D SLAM (simultaneous localization and mapping).
Bok et al. [8,9] estimated the motion of camera–laser fusion
systems by projecting scan data onto images.

In order to utilize multiple sensors in a unified framework,
it is essential to compute their relative poses, or extrinsic
parameters. The extrinsic calibration of multiple-camera systems
is a traditional issue in this area of research. The relative pose
between non-overlapping cameras is computed by estimating the
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motion of each camera and solving the AX = XB problem [10],
or by other methods [11,12]. Calibration of cameras and 3D laser
sensors can be solved in the same way, or with the geometric
constraints of objects scanned by them [13–15].

The extrinsic calibration of 2D laser sensors is more difficult
than that of 3D laser sensors, because their field of view is
limited to a 2D space. The most popular solution to this problem
was proposed by Zhang and Pless [16]. This solution minimized
the Euclidean distance between a planar pattern and the scan
data. Mei and Rives [17] used a similar geometric constraint for
extrinsic calibration. Li et al. [18] and Bok et al. [8] proposed line-
feature-based algorithms. Kassir and Peynot [19] automatically
calibrated a camera–laser system, but their method focused on the
automated detection of checkerboard corners and scan data on the
checkerboard, while the algorithm of extrinsic calibration is the
same as that by Zhang and Pless [16]. All of them require adequate
overlap between the camera and the 2D laser sensor.

For applications such as robots and ground vehicles, however,
sensors have different heading directions depending on their
individual purposes. For example, a horizontal 2D laser sensor and
a vertical camera heading to the ceiling can be combined for indoor
localization. Cameras for detecting visual features may not have
a common field-of-view with 2D laser sensors for scanning 3D
structures. Thus far, non-overlapping camera–laser systems can be
calibrated indirectly by attaching an extra sensor, such as a camera
or a 3D laser sensor,whose relative poses fromboth the camera and
the 2D laser sensor can be computed.

In this paper,we present practical solutions for the extrinsic cal-
ibration of a camera and a 2D laser sensor ‘without overlap’. Direct
calibration between non-overlapping sensors is important because
it does not require a bridging sensor. Moreover, this technique can
be utilized as an additional constraint for system calibration, even
if the system can also be calibrated using conventional methods.
To the best of our knowledge, this work is the first attempt to solve
this problem. We present two methods which utilize reasonable
assumptions about geometric features such as a plane or a line in-
tersecting two planes. For each method, we obtain an initial solu-
tion via SVD (singular value decomposition). This is then refined via
non-linear optimization, which does not require any assumptions
about structures but estimates their parameters. Both simulation
results and experiments using actual data provided reliable results
compared to ground-truth data.

This paper is an extension of our conference paper [20].
We renewed the mathematical derivations and analyzed data
dependency theoretically. We also included more experiments to
evaluate the proposed methods.

2. Overview of the proposed methods

A flow chart of the proposed methods is shown in Fig. 1. It
contains one method using a plane, and another using a line
intersecting two planes. First, we capture a number of image–scan
sets (pattern image and scan data captured simultaneously) while
a camera views a planar pattern and a 2D laser sensor scans a user-
defined structure. A relative pose between the structure and the
planar pattern must be fixed and close to the assumption made,
which will be explained in Section 3. Assuming that the camera is
calibrated, the relative pose between the camera and the planar
pattern may be computed easily. We thenmanually select the part
of the scan data that overlapped the structure. This approach is
widely used when calibrating systems, except for cases of self-
calibration. An example of the data selection process is shown in
Fig. 3(a). If we want to utilize an intersecting line, we extract a
feature from the scan data via line fitting. After accumulating rows
of the matrix A using the selected parts or features (see Section 3),
its singular vector corresponding to theminimum singular value is

used to compute an initial solution of the relative pose between the
sensors. Finally, this is refined via non-linear optimization, whose
cost function depends on the structure. The cost function for each
method is designed to minimize the sum of geometric errors (see
Section 4).

3. Solving a non-overlapping system

In this paper, the coordinate system of a planar pattern is set
to the ‘world coordinate system’. The pose of the planar pattern
is defined as z = 0 in the world coordinate system. Camera and
laser sensor have their own coordinate systems, which will be
referred to as ‘camera coordinate system’ and ‘laser coordinate
system’, respectively. We compute both the intrinsic and extrinsic
parameters of a camera using a conventional camera calibration
method [21]. Let [R t] be the world-to-camera transformation
(i.e., the extrinsic parameter or projection matrix).

The scanning plane of the 2D laser sensor is set equal to y = 0
in the laser coordinate system. A scanned pointwith distance d and
angle φ is converted into a Cartesian point qL = [xL 0 zL]⊤ in the
laser coordinate system using (1).
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We define rα and r̂α (α ∈ {x, y, z}) as the column of the rotation
matricesR = [rx ry rz] and R̂ = [r̂x r̂y r̂z], respectively. From (2), the
elements of qW can be expressed by the multiplication of known
10 × 1 vectors vx, vy, and vz and the unknown 10 × 1 vector x.
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In this section, we provide two methods: one using a plane
and the other using a line intersecting two planes. Both methods
provide a unique solution to the relative pose [R̂ t̂] using (3).
Although any axis of the world coordinate system may be utilized
for the proposed method, we derive equations only for y-axis in
the rest of this paper. Equations for x- and z-axes can be derived
in the same manner as those for y-axis. It should be noted that y-
axis examples have no relation with the assignment of the laser
coordinate system (y = 0).
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