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h i g h l i g h t s

• This paper proposes an approach to classifying somatosensory information in the human full body into the action categories.
• The muscle activities in the human full body are estimated from captured motions, ground reaction forces, and EMG data.
• The discrete hidden Markov models to be optimized by spectral learning are adopted for the action classifiers.
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a b s t r a c t

Human action classification is fundamental technology for robots that have to interpret a human’s
intended actions and make appropriate responses, as they will have to do if they are to be integrated
into our daily lives. Improved measurement of humanmotion, using an optical motion capture system or
a depth sensor, allows robots to recognize human actions from superficial motion data, such as camera
images containing human actions or positions of human bodies. But existing technology for motion
recognition does not handle the contact force that always exists between the human and the environment
that the human is acting upon. More specifically, humans perform feasible actions by controlling not only
their posture but also the contact forces. Furthermore these contact forces require appropriate muscle
tensions in the full body. Thesemuscle tensions or activities are expected to be useful for robots observing
human actions to estimate the human’s somatosensory states and consequently understand the intended
action. This paper proposes a novel approach to classifying human actions using only the activities of all
the muscles in the human body. Continuous spatio-temporal data of the activity of an individual muscle
is encoded into a discrete hidden Markov model (HMM), and the set of HMMs for all the muscles forms a
classifier for the specific action. Our classifiers were tested on muscle activities estimated from captured
human motions, electromyography data, and reaction forces. The results demonstrate their superiority
over commonly used HMM-based classifiers.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is expected that robots will be integrated into our everyday
lives and, in this context, they will be required to understand
our intended actions in order to establish smooth human–robot
communication. Research on human action recognition focusing
on classifying a video containing a human action into a specific
category has been intensively conducted. The video includes only
superficial color images or kinematic motions. It is consequently
difficult to estimate either the force with which a human body acts
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on its external environment or the internal state in the humanbody
and to recognize the human action by using these estimates. More
specifically, robots cannot understandwhether a human lifts heavy
or light luggage from observing only the human’s motion, and the
robots need to perceive other modal information, such as muscle
activity or the object that the motion acts on.

The estimation of human muscle activity constitutes a funda-
mental research problem in the field of biomechanics, and has been
tackled usingmeasurements fromelectromyograph (EMG) sensors
or computations of kinematics and dynamics. Lloyd et al. devel-
oped an EMG-driven musculoskeletal model of the human knee
and predicted the torque in the knee joint with a Hill-type mus-
cle model [1]. Yamane et al. proposed an algorithm to estimate
muscle forces in the human full body from captured motion, EMG
signals, and reaction forces on the force plate. This algorithm es-
timates the joint torques from the motion and the reaction forces
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Fig. 1. An optical motion capture system detects markers attached to a performer. The angles of all joints are estimated from the marker positions by inverse kinematics.
The joint torques are subsequently estimated from the joint angles and reaction forces acting on the body by inverse dynamics. The muscle tensions generating the joint
torques are computed from the joint torques and EMG data. The muscle tensions are converted to the resultant muscle activity.

through inverse kinematics and inverse dynamics computations,
and optimizes the muscle tensions generating the estimated joint
torques using EMG signals [2]. Applying this algorithm for a large
number of muscles is time consuming, but Murai et al. developed
a method to estimate the muscle forces in real time by grouping
similar functionalmuscles [3]. Thesemusculoskeletalmodelswere
extended to include the nervous system by combining them with
a neural network, and were used for the analysis of reflex mecha-
nisms [4,5]. These techniques allow partial somatosensation to be
estimated.

The robotics research has been targeting the learning frame-
work for motion representation, which is often referred to as ‘‘im-
itation learning’’ [6] or ‘‘programming by demonstration’’ [7]. The
learning algorithm encodes themotion as a sequence of configura-
tions, such as joint angles, into model parameters, and the model
can recover the joint angles so that the robots can perform al-
most the same motion as they learned [8–11]. In addition to mo-
tion generation, the model can be re-used for motion recognition.
These frameworks have been extended to handle othermodal data,
such as visual or linguistic information, and the robot can conse-
quently manipulate objects or understand human actions in lin-
guistic forms [12–16].

This research inspires us to combine the estimation of
somatosensation with the representation of human motions in
order to develop robots that understand human behavior in a
deep way. This paper introduces the extension of a stochastic
representation to a large number of muscle activities in human
full body motion patterns, and evaluates the performance of this
representation for motion recognition. Human full body motion is
expressed by a sequence of vectors, each of whose elements is a
muscle activity, and which do not include positions or joint angles,
and the sequence is encoded into hidden Markov model (HMM),
The muscle activities in the human full body are high dimensional,
and a sequence of the activities of each muscle is encoded into its
specific Markov chain. The integration of Markov chains of all the
muscles allows for classifying the somatosensation into its relevant
motion category. Additionally, we adopt a discrete HMMand apply
the spectral learning algorithm to encode the sequence into the
HMM, since the sequence of muscle activities looks impulsive and
the complex. The proposed approach was tested on human full
bodymotions in captured video, EMG data, and contact forces, and
the test demonstrated that the proposed approach outperformed
the commonly used HMM for motion recognition.

2. Estimation of muscle activity

Here we briefly explain the estimation of the activity of
all the muscles in the full body from captured motion, EMG
data, and contact forces [2]. Fig. 1 shows the pipeline for the
conversion of the measured data into muscle activity. The human
musculoskeletal model consists mainly of three kinds of elements:

bones, muscles, and tendons. The bones, muscles, and tendons
are represented by solid links, wires that actively generate forces,
and wires that passively generate forces, respectively. Inverse
kinematics computation converts the captured motion data p
into joint angles θ according to the skeletal model, and inverse
dynamics computation estimates the joint torques τ from the
derived joint angles and contact forces. The relation between the
joint torques τ and their equivalent muscle tensions f is given by

τ = J T f , (1)

where J is the Jacobian matrix of the muscle lengths with respect
to the joint angles. Uniquemuscle tensions cannot be derived from
Eq. (1) since the dimension of the muscle tension vector f is larger
than that of the joint torques τ. The unique muscle tensions are
found by minimizing the cost function
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where fE contains the reference muscle tensions estimated from
the EMG data, and Wτ and WE are positive weight matrices. An
inequality constraint −fmax ≤ f ≤ 0, where fmax is a vector
of the maximum muscle tensions, is added so that the muscle
tensions cause only contraction. The optimal muscle tensions for
the cost function in Eq. (2) are dynamically and biologically valid.
A sequence of muscle activities x, defined as the ratio of muscle
tension to maximum muscle tension, is thus obtained from the
captured motion, EMG data, and contact forces.

3. Learning of muscle activity

Sequences ofmuscle activities are encoded into specific discrete
HMMs. A discrete HMM can be defined by the compact notation
λ = {X,H, T ,O, 5}. For this, X =


1X, 2X, . . . , nX


is a set

of n possible distinct symbols X to be generated by the HMM;
H =


1H, 2H, . . . , mH


is a set of nodes; T =


Tij


is a

matrix whose entries Tij are the probabilities of transitioning from
node jH to node iH; O =


Oij


is a matrix whose entries Oij

are the probabilities of generating the symbol iX from the node
jH; and 5 = {πi, π2, . . . , πm} is a vector whose entries pi are
the probabilities of starting at node iH . The probabilities T ,O,
and 5, are commonly optimized using algorithms, such as the
Baum–Welch algorithm [17] or Viterbi training [18], so that the
obtained HMM is the one most likely to generate the training
data. These commonly used algorithms need to fix the structure
of the HMM and are not very effective in dealing with high-
dimensionality data.

This study focuses on encoding high-dimensionality muscle
activity into an HMM. The complexity of muscle activity can vary
greatly depending on themuscles and themotion patterns: several
muscles may remain inactive while muscles specific to a motion
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