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h i g h l i g h t s

• Two methods for kidnap detection using local pose estimation techniques are proposed.
• At least two independent ways of estimating relative pose are required.
• Metrics assessing the quality of a pose estimate are developed and evaluated.
• For applications with limited training data, a joint classifier performs well.
• If a large training dataset is available, an SVM classifier is more accurate.
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a b s t r a c t

Kidnapping occurs when a robot is unaware that it has not correctly ascertained its position, potentially
causing severemap deformation and reducing the robot’s functionality. This paper presentsmetric-based
techniques for real-time kidnap detection, utilising either linear or SVM classifiers to identify all kidnap-
ping events during the autonomous operation of a mobile robot. In contrast, existing techniques either
solve specific cases of kidnapping, such as elevator motion, without addressing the general case or re-
move dependence on local pose estimation entirely, an inefficient and computationally expensive ap-
proach. Three metrics that measured the quality of a pose estimate were evaluated and a joint classifier
was constructed by combining themost discriminative quality metric with a fourthmetric that measured
the discrepancy between two independent pose estimates. A multi-class Support Vector Machine classi-
fier was also trained using all four metrics and produced better classification results than the simpler
joint classifier, at the cost of requiring a larger training dataset. While metrics specific to 3D point clouds
were used, the approach can be generalised to other forms of data, including visual, provided that two
independent ways of estimating pose are available.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Kidnapping occurs when a robot fails to correctly ascertain
its position through dead-reckoning or other relative localisation
techniques [1]. If not detected and resolved, kidnapping causes
many existing localisation and mapping algorithms to malfunc-
tion. This results in incorrect maps and position estimates, which
may render the robot unable to perform its function. In addition, a
kidnapped robotmay unwittingly performdangerous actions, such
as driving towards previously mapped hazards. While kidnapping

∗ Corresponding author at: Research School of Engineering, Australian National
University, Canberra ACT 0200, Australia. Tel.: +61 401 867 186.

E-mail addresses: djcampbell.01@gmail.com, dylan.campbell@nicta.com.au
(D. Campbell), m.whitty@unsw.edu.au (M. Whitty).

may not occur regularly, the severity of the consequences is such
that it is incumbent upon the robot designer to implement a sys-
tem for kidnap detection.

When kidnapping occurs, the robot is unaware that its pose es-
timate is incorrect. It would be inefficient to run global localisa-
tion on every occasion, because a reasonable pose estimate is only
unavailable when kidnapped and methods that incorporate this
estimate are much quicker and more suited to real-time applica-
tions [2]. Hence, a means to detect kidnapping events is manda-
tory for an efficient mapping and localisation system that is robust
to kidnapping events.

Extending the classification of Engelson and McDermott [1],
three types of kidnapping can be differentiated. Type 1 occurs
when the robot’s position is changed significantly, but its posi-
tion estimate does not change accordingly. This happens when
the robot’s position-tracking sensors fail to detect motion, such as
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when the robot is carried, enters an elevator or encounters fog, dust
or a blackout, which circumvent the wheel encoders, visual odom-
etry system or both. In addition, sequential scan-matching algo-
rithms, such as the Iterative Closest Point (ICP) [3] and the Normal
Distributions Transform (NDT) [4] algorithms, can misalign scans
and thereby fail to estimate the robot’s location correctly.

Type 2 kidnapping occurs when the robot’s internal position
estimate changes significantly, but its actual location does not,
such as when the position estimate is reset upon shutting down.
The robot will need to relocalise within the global map when it
is turned on, a circumstance known as the wake-up robot prob-
lem [5]. As well as system errors and instabilities, this form of kid-
napping can also be caused by hardware issues, such as knocked
cables or faulty connections, that may otherwise go undetected. A
robust solution should be able to handle such failures.

Finally, Type 3 kidnapping is a short range variant of Type 1,
occurring when the robot moves a short distance without sensing
that it is moving. This primarily happens when the robot slips
and the sensors, such as wheel encoders, incorrectly measure the
displacement.

The action taken depends on the kidnap type: global localisa-
tion is required for Types 1 and 2, whereas local techniques, such
as scan-matching or optical flow, are sufficient to correct the pose
after Type 3 kidnapping. While it may seem unnecessary to detect
Type 3 kidnapping, it is advantageous for an autonomous system to
know when slip has occurred in order to change the driving strat-
egy. In particular, slip may indicate that the robot has encountered
an obstacle that it cannot detect, such as a rock abutting one of
the wheels. Also, scans taken when slip was detected could be ex-
cluded from the global map to reduce local deformation.

In our previous work [6], we investigated a variety of metrics
for use in a kidnap detection system. Furthermore, we proposed a
joint classifier that combined a quality metric with a discrepancy
metric to robustly identify when kidnapping occurred. While only
detection metrics specific to 3D point clouds were evaluated, the
approach was generalisable to 2D and other modalities, such as
visual. The critical requirements were that two independent ways
of estimating relative pose were available and that the quality of at
least one of the pose estimates could be assessed. To detect Type 3
kidnapping, such as slip, another requirement was that the pose
must be estimated in a way that is relatively immune to that form
of kidnapping and in a way that is not immune.

In this work, we extend the previous detection formulation to a
Support Vector Machine (SVM) approach [7,8]. Suitable when suf-
ficient training data is available, this approach can easily integrate
additional quality and discrepancy metrics to improve classifica-
tion accuracy. Using an SVM with a non-linear kernel, all kidnap
types can be distinguished, including Types 1 and 2 that were pre-
viously classified as identical. An SVM was trained and tested on
the datasets used in our previous work [6], as well as the large,
publicly-available Hannover2 dataset [9].

The remainder of this paper is organised as follows: Section 2
briefly reviews related work, Section 3 provides an overview of al-
gorithms and concepts used in the method and Section 4 details
how the proposed kidnap detection system functions. The experi-
ments and results are presented in Sections 5 and 6 and are dis-
cussed in Section 7. Finally, the most important conclusions are
summarised in Section 8.

2. Related work

The two main approaches to kidnap detection are to either in-
corporate new sensors, an application-specific solution, or remove
dependence on local pose estimation entirely. The first approach
only partially solves the problem, but can be useful in situations
where one form of kidnapping predominates. For example, Lee

et al. [10] use a wheel drop switch to detect kidnapping when a
robotic vacuum cleaner is picked up and taken to another room,
but cannot detect other forms of kidnapping.

Kidnapping due to elevator motion has been partially solved
by using a barometer [11] or an accelerometer [12] to detect
floor transitions. However, both sensors were unable to accurately
assess the relative altitude of the robot and therefore additional in-
formation about the structure of the building was required to con-
struct a full 3D map.

To address the problem of kidnapping when a vision-based
robot enters a dark environment, Henry et al. [13] incorporated
depth data into their visual SLAMapproach. By using anRGB-Depth
camera that can function in light deficient areas, they improved
the robustness of their localisation system to kidnapping caused
by sensor failure.

The second approach obviates the need for kidnap detection in
the first place by performing global localisation regularly, regard-
less of whether the robot has been kidnapped or not. Such an ap-
proach was taken by Thrun et al. [14] and Milstein et al. [15], both
of whom used a variant of the Monte Carlo Localisation algorithm.
After a kidnapping event, the approaches gave increasing credence
to kidnapping hypotheses as the robot progressed.

One problem with this approach is that kidnapping events are
not detected immediately. As a result, the robot will operate with
an incorrect internal map until sufficient evidence is attained to
suggest that kidnapping has occurred. At best, this is inefficient,
rendering the robot unable to perform its function. At worst, the
kidnapped robot could unwittingly perform dangerous actions,
such as driving towards previously identified hazards. In addi-
tion, the computational complexity of this approach scales linearly
with the area of the mapped environment. It would be preferable
for kidnapping to be detected in constant time, as our approach
achieves.

For localisation systems that use visual odometry, the failure to
track a sufficient number of features can be indicative of kidnap-
ping, as asserted by Se et al. [16]. However, this approach to kid-
nap detection does not extend to other localisation methods, like
scan-matching, and cannot detect Type 3 kidnapping, such as slip.
Nonetheless, for visual odometry systems, a metric based on the
number of tracked features could be incorporated into ourmethod,
allowing the detection of slip.

Another metric for kidnap detection was proposed by Choi
et al. [17], based on the entropy of node probabilities in a topolog-
ical map. However, this approach can only be used when a global
map of the environment is available and cannot detect wheel slip.

3. Fundamentals

3.1. The Normal Distributions Transform algorithm

Two of the quality metrics evaluated in this work (Qs and Qh)
were derived from the optimisation function and Hessian of the
3D Normal Distributions Transform (NDT) scan-matching algo-
rithm [4], although the metrics are calculated without running the
algorithm. It is particularly useful for kidnap detection because it
provides an estimate of the variances of each pose degree of free-
dom [18], which can be used as a measure of registration quality.

The NDT algorithm subdivides a point cloud into a 3D grid of
cells and computes a Probability Density Function (PDF) for each
cell. A mixed normal and uniform distribution is used, since a pure
Gaussian is not robust to outliers [19]. The algorithm then finds the
transformation, corresponding to a change in pose, thatmaximises
the likelihood that the points of another point cloud were sampled
from this PDF surface. It does this byminimising an approximation
of the negative log-likelihood of Ψ , as given in Eq. (1), where Ψ

is the likelihood function, p is the PDF with mean and covariance
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