
Robotics and Autonomous Systems 62 (2014) 1047–1059

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Graph-based optimal reconfiguration planning for
self-reconfigurable robots
Feili Hou ∗, Wei-Min Shen
Information Sciences Institute, University of Southern California, United States

h i g h l i g h t s

• On finding the least (dis)connect actions to reconfigure between arbitrary shapes.
• A proof that the optimal reconfiguration planning problem is NP-complete.
• An algorithm which can generate the optimal reconfiguration sequence.
• An algorithm that finds the near-optimal reconfiguration sequence in polynomial time.

a r t i c l e i n f o

Article history:
Available online 12 September 2013

Keywords:
Modular robots
Optimal reconfiguration planning
Computational complexity

a b s t r a c t

The goal of optimal reconfiguration planning (ORP) is to find a shortest reconfiguration sequence to
transform a modular and reconfigurable robot from an arbitrary configuration into another. This paper
investigates this challenging problem for chain-type robots based on graph representations and presents
a series of theoretical results: (1) a formal proof that this is an NP-complete problem, (2) a reconfiguration
planning algorithm called MDCOP which generates the optimal graph-based reconfiguration plan, and
(3) another algorithm called GreedyCM which can find a near-optimal solution in polynomial time.
Experimental and statistical results demonstrate that the solutions found by GreedyCM are indeed near-
optimal and the approach is computationally feasible for large-scale robots.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Different from conventional robots, self-reconfigurable robots
can adapt their own configurations and offer more versatile
capabilities for challenging tasks in different environments. In ap-
plications such as reconnaissance, rescue missions, and space ap-
plicationswhere the task and the environment are not always fully
known in advance, the ability to adapt shape may be critical for a
robot to accomplish its tasks, maximize its potential, and recover
from unexpected damage. Self-reconfigurable robots with modu-
lar architecture would be ideal for such situations. Thus, realizing
the ability of self-reconfiguration with a large number of indepen-
dent modules has been one of the most important and challenging
topics in the field of modular and reconfigurable robots.

Based on the design of modules, self-reconfigurable robots can
be classified into twomain categories: lattice-type and chain-type.
In lattice-type robots, modules are arranged in a 2D or 3D lattice
space of cells, and reconfiguration is achieved by a module to de-
tach from its current lattice location, move along the surface of
other modules, and then dock to a module at an adjacent lattice

∗ Corresponding author.
E-mail addresses: fhou@usc.edu (F. Hou), shen@isi.usc.edu (W.-M. Shen).

cell. Examples of such robots include 3D Fracta [1], Molecule [2],
Telecube [3], Crystalline [4,5], ICubes [6], ATRON [7], Catom [8],
the Programmable Parts [9], Stochastic-3D [10], Miche [11], Vac-
uubes [12] etc. In chain-type robots, modules can form movable
chains and loops of any graphical topology, and the reconfigura-
tion is achieved through ‘‘connect’’ and ‘‘disconnect’’ operations
betweenmodules along with the joint motion of chains. Hardware
implementations of this class of robots include CONRO [13,14],
PolyBot G3 [15], M-TRAN III [16], Molecubes [17], SuperBot [18–
20], CKBot [21], Odin [22], YamoR [23], Roombot [24], Motein [25]
etc. The different geometric arrangement of modules between
lattice-type and chain-type modular robots makes their reconfig-
uration planning mechanisms fundamentally different.

This paper is mainly focused on the reconfiguration planning of
chain-typed robots. The objective of self-reconfiguration planning
is to figure out the reconfiguration steps for changing connectivity
among the modules so as to transform the robot from the current
configuration into a goal configuration. In the distributed fashion,
it is the question of how the modules coordinate with others to
figure out the necessary connections and disconnections given that
they can only communicate and sense locally. Currently, only a few
works were published on chain-type reconfiguration.

Casal [26] first tackled the problem of chain reconfiguration
and presented a divide-and-conquer approach to the problem. This

0921-8890/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.robot.2013.06.014

http://dx.doi.org/10.1016/j.robot.2013.06.014
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2013.06.014&domain=pdf
mailto:fhou@usc.edu
mailto:shen@isi.usc.edu
http://dx.doi.org/10.1016/j.robot.2013.06.014


1048 F. Hou, W.-M. Shen / Robotics and Autonomous Systems 62 (2014) 1047–1059

a b

c

de

Fig. 1. An example of reconfiguration process.

algorithm is further developed by Yim et al. and theoretical results
regarding its running time and the number of moves needed to re-
configure are given in [27]. Nelson [28] used the principal com-
ponent analysis in conjunction with standard weighed bipartite
graph matching theory to compare the initial and goal configu-
rations and generate the reconfiguration steps. Payne [29] used a
hormone inspired distributed controller and implemented the re-
configuration from ‘‘I’’ shape to ‘‘T’’ shape on CONRO. Gay [30] used
themodules called DOF-Box II to units to build furniture that could
change shape. Asadpour [31] has developed a self-reconfiguration
planningmethod based onheuristic search,where the graph signa-
tures method is used to test isomorphism between configurations,
and the maximum common graph between configurations is used
as a heuristic function to guide the search.

Aside from the research on reconfiguration planning, some
other work on configurations is also indirectly related to our
problem. I-Ming Chen [32] mentioned that the number of configu-
rations is exponential, and even enumerating all the configurations
is difficult. Castano [14] and Park [33] provide ways of finding
the functionally identical configurations using graph isomorphism
and configurationmatching techniques. Chirikjian [34] established
lower and upper bounds for the minimum number of moves
needed for lattice-type reconfiguration, although it may not be
applicable for chain-type reconfiguration.

The existing literature has used different techniques for finding
an efficient reconfiguration sequence. However, the optimal solu-
tion with the least reconfiguration steps has never been reached.
It is commonly believed that this problem is computationally in-
tractable, but concrete evidence for this belief is still lacking. Some
key research questions still remain open in this area. For example,
how hard is it to find the least number of reconfiguration steps?
Can an optimal solution be found efficiently? How to find the op-
timal solutions?

The goal of this paper is to investigate the optimal reconfigura-
tion planning problem, i.e. finding the least number of reconfigura-
tion steps to transform fromone arbitrary configuration to another.
During physical execution, some additional reconfiguration steps
might be needed to compensate hardware limitation, which de-
pend on many robot-dependent factors like the modules’ internal
degree of freedom, self-collision, gravity and others, and vary con-
siderably from one module design to another. To gain the intrinsic
theoretical insight of this problem, we exclude the hardware con-
cerns for now, andwork on the high-level connectivity planning in
terms of graph representation in this paper.

We first analyze the complexity of the optimal reconfigura-
tion planning problem by rephrasing the optimal reconfiguration

problem into the configuration matching problem. Based on our
previouswork [35], we provide a theoretical proof that the optimal
reconfiguration planning problem of finding the least number of
reconfiguration steps to transform between two configurations is
NP-complete, i.e. a polynomial algorithm is unlikely to exist. Next,
two different reconfiguration planning methods are proposed for
different needs. The first one is calledMDCOP,whichhas a theoreti-
cal guarantee to find the optimal graph-based reconfiguration plan.
MDCOP works by converting a reconfiguration problem into a dis-
tributed constraint optimization problem (DCOP), and then solve it
through existing DCOP algorithms. The second algorithm is called
GreedyCMand it can find extremely near-optimal solutions in time
that is polynomial to the size of the robot. Since the control of
modular robots is inherently distributed, both of our methods are
developed in distributed fashion, where the robot can efficiently
identify the reconfiguration steps in amulti-modular-coordination
way.

In the rest of the paper, Section 2 defines the problem of self-
reconfiguration planning and Section 3 maps the problem into a
configuration-matching problem. Section 4 analyzes the compu-
tational complexity of the optimal reconfiguration planning. Sec-
tion 5 presents the two algorithms for reconfiguration planning in
the graph-based representations. Experimental results are demon-
strated in Section 6, and conclusions and future work discussion
are given in Section 7.

2. Problem statement

2.1. The optimal reconfiguration planning problem

A modular robot is composed of a set of modules, and its con-
figuration is an arrangement of the connectivity of the modules.
The two elementary reconfiguration actions for rearranging con-
nectivity are: (1) making some new connections, also called attach
or connect actions, which are usually executed along with the mo-
tion of chains, and (2) disconnecting some current connections,
also called detach actions or disconnect actions. We say that two
configurations are adjacent if one can be transformed into the other
by one reconfiguration action. Fig. 1 shows an example of the re-
configuration process using SuperBot [18–20]. The robot transform
from configuration 1 to configuration 2 by an attach action, and
then to configuration 3 through a detach action. Please note that
only attach or detach actions, rather than the jointmovements,will
change the configuration. So, in our example, (a) and (b) have the
same configuration even though they look different. So do (d) and
(e).



Download English Version:

https://daneshyari.com/en/article/411299

Download Persian Version:

https://daneshyari.com/article/411299

Daneshyari.com

https://daneshyari.com/en/article/411299
https://daneshyari.com/article/411299
https://daneshyari.com

