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a b s t r a c t

From an early stage in their development, human infants show a profound drive to explore the objects
around them. Research in psychology has shown that this exploration is fundamental for learning the
names of objects and object categories. To address this problem in robotics, this paper presents a behavior-
grounded approach that enables a robot to recognize the semantic labels of objects using its own
behavioral interaction with them. To test this method, our robot interacted with 100 different objects
grouped according to 20 different object categories. The robot performed 10 different behaviors on them,
while using three sensorymodalities (vision, proprioception and audio) to detect any perceptual changes.
The results show that the robot was able to use multiple sensorimotor contexts in order to recognize a
large number of object categories. Furthermore, the category recognition model presented in this paper
was able to identify sensorimotor contexts that canbeused to detect specific categories.Most importantly,
the robot’s model was able to reduce exploration time by half by dynamically selectingwhich exploratory
behavior should be applied next when classifying a novel object.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Object categories are all around us—our homes and offices
contain a vastmultitude of objects that can be organized according
to a diverse set of criteria ranging from form to function. A
robot operating in human environments would undoubtedly have
to assign category labels to novel objects because it is simply
infeasible to preprogram it with knowledge about every individual
object that it might encounter. For example, to clean a kitchen
table, a robot has to recognize semantic object category labels
such as silverware, dish, or trash before performing an appropriate
action.

The ability to learn and utilize object category memberships is
an important aspect of human intelligence and has been exten-
sively studied in psychology [1]. A large number of experimental
and observational studies have revealed that object category learn-
ing is also linked to our ability to acquire words [2,3]. Researchers
have postulated that, with a few labeled examples, humans at var-
ious stages of development are able to identify common features
that define category memberships as well as distinctive features
that relate members and non-members of a target category [4,5].
Other lines of research have highlighted the importance of object
exploration [6,7], which is important for learning object categories
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sincemany object properties cannot always be detected by passive
observation [8,9].

Recently, several research groups have started to explore how
robots can learn object category labels that can be generalized to
novel objects [10–14]. Most studies have examined the problem
exclusively in the visual domain or have used a relatively small
number of objects and categories. To address these limitations,
this paper proposes an approach to object categorization that
enables a robot to acquire a large number of category labels from
a large set of objects. This is achieved with the use of multiple
behavioral interactions and multiple sensory modalities. To test
our method, the robot in our experiment (see Fig. 1) explored 100
different objects classified into 20 distinct object categories using
10 different interactions (e.g., grasp, lift, tap, etc.) making this one
of the largest object sets that a robot has physically interacted
with.

Using features extracted from the visual, auditory, and proprio-
ceptive sensory modalities, coupled with a machine learning clas-
sifier, the robot was able to achieve high recognition rates on a
variety of household object categories (e.g., balls, cups, pop cans,
etc.). The robot’s model was also able to identify which sensory
modalities and behaviors are best for recognizing each category la-
bel. In addition, the robotwas able to actively select the exploratory
behavior that it should try next when classifying an object, which
resulted in faster convergence of the model’s accuracy rates when
compared to random behavior selection. Finally, the model was
evaluated on whether it can detect if a novel object does not be-
long to any of the categories present in the robot’s training set.
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Fig. 1. The humanoid robot used in our experiments, along with the 100 objects
that it explored.

2. Related work

Most object categorization methods in robotics fall into one
of two broad categories: (1) unsupervised methods, in which
objects are categorized using unsupervised machine learning
algorithms (e.g., k-Means, Hierarchical Clustering, etc.) and
(2) supervised methods, in which a labeled set of objects is used
to train a recognition model that can label new data points.
Several lines of research have demonstrated methods that enable
robots to autonomously form internal object categories based on
direct interaction with objects [15,11,16,17]. For example, Griffith
et al. [11] showed how a robot can use the frequencies with which
certain events occur in order to distinguish between container and
non-container objects in an unsupervised manner. Dag et al. [16]
and Sinapov and Stoytchev [18] have also shown that robots can
categorize and relate objects based on the type of effects that they
produce when an action is performed on them.

In contrast, the focus of this paper is on supervised methods
for object categorization, which attempt to establish a direct
mapping between the robot’s object representation and human-
provided semantic category labels. A wide variety of computer
vision methods have been developed that attempt to solve
the problem using visual image features coupled with machine
learning classifiers [19–21]. Several such methods have been
developed for use by robots, almost all exclusively working in the
visual domain [22,23,12,24,14,25]. One advantage of visual object
classifiers is that they can often be trained offline on large image
datasets. Nevertheless, they cannot capture object properties that
cannot always be perceived through vision alone (e.g., object
compliance, object material, etc.). In other words, disembodied
object category representations that are grounded solely in visual
input cannot be used to capture object properties that require
active interaction with an object. Thus, even the best visual
classifier is guaranteed to fail on certain object classification tasks.
For example, Lai et al. [26] report that using state-of-the-art RGB
and depth features for classifying 300 objects into 51 categories
results in 85.4% accuracy, which demonstrates that there is still a
lot of information about object categories that cannot be captured
using disembodied vision-based systems. Furthermore, it has
been argued that embodied perception is not only desirable, but
also required for achieving intelligent autonomous behavior by
a robotic system [27]. Therefore, to address the limitation of
disembodied systems, our robot grounded the semantic category
labels of objects in its own sensorimotor experience with them,
which is in stark contrast with approaches that rely purely on
computer vision datasets.

The importance of non-visual sensory modalities for robotic
object perception has been recognized by several lines of re-
search, which have shown that robots can recognize objects

using auditory [28–30], tactile [31,32], and proprioceptive
[33,34] sensory modalities. For example, Natale et al. [33] showed
that proprioceptive information obtained from the robot’s hand
when grasping an object can be used to successfully recognize the
identity of the object. Similarly, Bergquist et al. [34] performed an
experiment in which a robot was able to recognize a large number
of objects using proprioceptive feedback from the robot’s arm as
it manipulated them. Other research has also shown that auditory
features (e.g., sounds generated as the robot’s end effector makes
contact with an object) can also be useful for recognizing a pre-
viously explored object [28,29]. Most recently, a study by Sinapov
et al. [35] demonstrated that a robot can achieve high object recog-
nition rates when tested on a large set of 50 objects by integrating
auditory and proprioceptive feedback detected over the course of
exploring the objects. In contrast to this previous work, the study
in this paper demonstrates that behavior-grounded object percep-
tion can also be used by a robot to both learn and recognize human-
provided semantic category labels for novel objects.

Several studies have already demonstrated some ability of
robots to assign category labels to objects based on interaction
with them. For example, Takamuku et al. [36] demonstrated that
a robot can classify 9 different objects as either a rigid object, a
paper object, or a plastic bottle using auditory and joint angle data
obtained when the robot shakes the objects. An experiment by
Chitta et al. [37] has shown that tactile feedback produced during
grasping can be useful for categorizing cans and bottles as either
full or empty. In another study, Sinapov and Stoytchev [38] showed
that by applying five different exploratory behaviors on 36 objects,
a robot may learn to recognize their material type and whether
they are full or empty, based on the auditory feedback produced
by the objects.

In previous work, we proposed a graph-based learning method
that allows a robot to estimate the category label of an object
based on pairwise object similarity relations estimated from
different couplings of five exploratory behaviors and two sensory
modalities [13]. In that experiment, the robot was able to classify
25 objects according to object categories such as plastic bottles,
objectswith contents, pop cans, etc. The accuracywas substantially
better than chance, despite the fact that visual feedback was not
used.

To further improve category recognition rates, the study
presented in this paper describes a method that scales to a
much larger number of exploratory behaviors, sensory modalities,
and objects than any previously published experiments in which
robots have perceived objects by interacting with them. More
specifically, in addition to doubling the number of objects, this
paper also doubles the number of behaviors and more than triples
the number of sensorimotor contexts as compared to our previous
work [35] (which only focused on object recognition rather than
category recognition). In addition, we also show that by using
prior information in the form of confusion rates for all categories,
the robot can actively select which behavior to apply next when
classifying a novel object.

3. Experimental platform

3.1. Robot and sensors

The experiments were performed with the upper-torso hu-
manoid robot shown in Fig. 1. The robot has as its actuators two
7-DOF Barrett Whole ArmManipulators (WAMs), each with an at-
tached 3-finger Barrett Hand. Each WAM has built-in sensors that
measure joint angles and torques at 500 Hz. An Audio-Technica
U853AW cardioid microphone mounted in the robot’s head was
used to capture auditory feedback at the standard 16-bit/44.1 kHz
resolution and rate over a single channel. The robot’s right eye
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