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a b s t r a c t

The primary challenge for any autonomous system operating in realistic, rather unconstrained scenarios
is to manage the complexity and uncertainty of the real world. While it is unclear how exactly humans
and other higher animals master these problems, it seems evident, that abstraction plays an important
role. The use of abstract concepts allows us to define the system behavior on higher levels. In this paper
we focus on the semanticmapping of indoor environments.We propose amethod to extract an abstracted
floor plan from typical grid maps using Bayesian reasoning. The result of this procedure is a probabilistic
generative model of the environment defined over abstract concepts. It is well suited for higher-level
reasoning and communication purposes. We demonstrate the effectiveness of the approach using real-
world data.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The primary challenge for any autonomous system operating
in realistic, rather unconstrained scenarios is to manage the
complexity and uncertainty of the realworld. In robotics this holds,
as soon as the robots leave the carefully engineered production
environments in which they have been so successful in the past
decades.

The typically high degree of uncertainty in real-world envi-
ronments, that makes a robot’s life so hard, comes from the fol-
lowing sources: the limited measurement accuracy and other
limitations of the system’s sensors, modeling errors and purpose-
fully made simplifications in the system’s internal representa-
tions, unobserved environment dynamics and random effects in
action execution. While it is unclear how exactly humans and
other higher animalsmaster these problems, it seems evident, that
abstraction plays an important role. The use of abstract concepts
allows us to define the system behavior on higher levels and in-
dependently of the exact setting of the environment and the exact
sensor readings.

In this study we address the first two of the problems
mentioned above, in that we provide the system with a limited
capability of abstraction allowing for a higher-level understanding
of its environment. In addition, we directly address the uncertainty
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related issues by strictly following a probabilistic approach that
explicitly models and keeps track of the uncertainty associated
with any variables of the problem.

As a by-product, the system’s capability to use predefined
concepts will ease cooperation in mixed human–robot tasks, since
a common language used by both the human and the robot is a
precondition for efficient exchange of information between both
parties. This is however not addressed in this paper.

To illustrate the general idea, we use an example from
an indoor navigation scenario, namely the semantic analysis
of the commonly used occupancy grid maps. The objective of
the presented method is to provide an abstracted, semantically
annotated but still probabilistic map of the indoor environment.
For this purpose, we first use a robot – equipped with a 2D laser
scanner – to build an occupancy grid of the environment using
a standard SLAM method [1] and then employ the procedure
described in the remainder of this document to extract the
semantic information. To do this, we use a Markov chain Monte
Carlo (MCMC) based sampling technique [2] to generate samples
from the probability density function capturing the distribution
of probable worlds the robot could encounter. The maximum
posterior solution could then be used as an estimate of what the
world semantically looks like.

2. Problem formulation

Most of todays’ mapping approaches aim to construct a globally
consistent, metric map of the robot’s operating environments.
See Fig. 1 for a typical result. Such maps enable the robot to
localize itself with respect to the environment and thus determine
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Fig. 1. A typical occupancy grid map of an indoor environment, obtained from the
Robotics Data Set Repository (Radish) [3].

its global pose in an assumed flat world with an accuracy of
typically a few centimeters in translation and below one degree
in rotation. Based on this capability, the robot can also plan a
path and navigate towards a goal, that will also be specified by
its metric position in the global map reference frame. However,
the robot does not understand its environment in terms of typical
semantic concepts like rooms, corridors or functionally enriched
concepts like a kitchen or living room. Furthermore, the robot does
not understand relations like adjacency, connectivity via doors, or
properties like rectangularity that – if known to be relevant to the
given environment – could help to build themaps in the first place.

Our work aims at extracting such semantic models of the
environment from the more or less raw sensor data. In the context
of this paper, we assume, that amap, like the one depicted in Fig. 1,
was already constructed using one of the provenmethods available
for this purpose [1].

Assigning semantics to spatial maps in robotics has not been
looked at as intensely as the metric or topological mapping.

Still, several important contributions to the field have already been
made. They can be clustered into two major groups. The first
group consists of methods based on place labeling, some notable
examples are [4–11]. These methods assign semantic labels to
places or regions of the accessible work space of the robot. They
are very much in the tradition of [12] or [13].

A second group is formed by approaches assigning semantic
labels to parts or objects of the perceived structure of the
environment, like traversable terrain, trees or similar structures
in outdoor environments or walls, ceilings, and doors in indoor
settings [14–22].

In addition to the two groups mentioned above, there are
also other approaches. The approach of [23] semantically models
places via objects. In [24], a method is proposed, which explores
the environment in a room-by-room style and fits the explored
map part into polygons. Tapus and Siegwart [25] build a map
of the environment based on so called fingerprints of explored
places. Lim et al. [26] introduce an ontology-based method that
integrates low-level data with high-level constraints to represent
the knowledge as a semantic network.

Different from those methods mentioned above, we aim to
construct a probabilistic generative model of the world around the
robot, that is essentially based on abstract semantic concepts but
at the same time allows us to predict the continuous percepts that
the robot obtains via its noisy sensors. This abstract model has a
form similar to a scene graph, a structure which is widely used
in computer graphics. The scene graph (see Fig. 2(c)) in our case
consists of rooms and doorways connecting the rooms and can be
visualized as a classical floor plan (see Fig. 2(b)).

The scene graph and thus also the semantically annotatedworld
state is denoted by a vector of hidden parametersW specifying the
world state, that generated the occupancymapM we are currently
looking at. In the Bayesian framework we can use a maximum

Fig. 2. (a) A simplified occupancy grid map: unexplained area is drawn in gray, free space is drawn in white. Occupied area is drawn in black. (b) A possible floor plan
represented as a scene graph (W ): the world is divided into four rooms and the corresponding unexplained area. The connectivity is given by the wall types (dwall: a wall
that has one or more doors on it; nwall: a wall that separates two rooms but does not contain a door on it; bwall: a wall that just serves as boundary). A partially dotted line
in light gray indicates a dwall, where the dotted part is the door, and the solid line part is the rest of the wall. A light-gray line (without dots) shows one nwall, and black
stands for a bwall. (c) The semantic description of the world in the form of the scene graph: directed links connect nodes. The dashed lines represent connectivity. Like room
4, each room has three child nodes: walls, free space, and doors. Note that the lowest level of node in the tree structure is the grid cell that belongs to walls, free space and
doors.
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