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h i g h l i g h t s

• We examine graph-based search methods for motion planning using motion primitives.
• We develop a locally greedy algorithm and compare it to a version of Weighted A*.
• Greedy algorithm is advantageous when utilizing large motion primitive libraries.
• We develop a hybrid control technique for tracking concatenated motion primitives.
• The approach is applied to a hovercraft subject to disturbances and uncertainties.
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a b s t r a c t

A hierarchical approach for motion planning and control of nonlinear systems operating in obstacle envi-
ronments is presented. To reduce the computation time during themotion planning process, dynamically
feasible trajectories are generated in real-time through concatenation of pre-specified motion primitives.
The motion planning task is posed as a search over a directed graph, and the applicability of informed
graph search techniques is investigated. Specifically, we develop a locally greedy algorithmwith effective
backtracking ability and compare this algorithm to weighted A* search. The greedy algorithm shows an
advantagewith respect to solution cost and computation timewhen largermotion primitive libraries that
do not operate on a regular state lattice are utilized. Linearization of the nonlinear system equations about
the motion primitive library results in a hybrid linear time-varying model, and an optimal control algo-
rithmusing the ℓ2-induced normas the performancemeasure is provided to ensure that the system tracks
the desired trajectory. The ability of the resulting controller to closely track the trajectory obtained from
the motion planner, despite various disturbances and uncertainties, is demonstrated through simulation.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Motion planning for unmanned vehicles involves developing
feasible trajectories through an obstacle field from a given initial
state to a desired goal state; see, for instance, [1,2]. By using a dis-
cretized set of feasible motion primitives, the problem of finding a
trajectory from the start to the goal becomes a graph search, a topic
that has received a wealth of attention in the literature. This paper
takes the approach of utilizing a set of pre-specified motion primi-
tives, i.e. state and control histories defined over finite (or semi-
infinite) time intervals, to generate, in real-time, collision-free
trajectories from start to goal via graph search methods. As for
the execution of the motion plan, the series of motion primitives
generated by the planner will correspond to a sequence of pre-
designed subcontrollers to be applied consecutively.
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The notion of constructing a solution from available trajectories
is a common approach for vehicle motion planning. Prior meth-
ods have used online optimization to determine the trajectory [3],
concatenating trim and maneuver trajectories to form a dynami-
cally feasible path from the start state to the goal. In certain sce-
narios, the solution of such an optimization problem may require
more computational effort than can be allotted to the planning
task. Deterministic and sampling-based searches over graphs are
two broad categories that have received considerable attention re-
lated to robot and vehicle trajectory planning in obstacle environ-
ments; a comprehensive review of motion planning with respect
to unmanned aerial vehicles is given in [4].

Deterministic graph search algorithms use knowledge obtained
during the search as well as prior knowledge of the environment
to work towards an optimal solution. A heuristic, or rule of thumb,
assists in determining the order of expansion during the search. For
vehicle motion planning problems, the cost-to-goal is a commonly
chosen heuristic. The A* algorithm, a complete and optimal algo-
rithm, uses the path cost to reach each node as well as the future
path cost estimate from the heuristic, and traverses the graph by
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expanding nodes with the lowest total path cost. For vehicle mo-
tion planning, the length of the path to reach a node can be used
for path cost. In some applications, finding the optimal path may
become burdensome, and a suboptimal solution is accepted to re-
duce the computational load. Weighted A* (WA*) relaxes optimal-
ity by weighting the heuristic in relation to the cost-to-go, effec-
tively increasing the greediness of the algorithm, and is able to re-
turn solutions much faster with a bound on the suboptimal path
cost [5,1]. Recent work related to A* based search methods has fo-
cused on iteratively improving suboptimal trajectories towards the
minimum-cost path; see, for instance, the anytime search heuris-
tic developed in [6,7]. Anytime search attempts to quickly return
a feasible yet suboptimal path, and then improve upon this path
successively in the time allotted for planning. In [7], for example,
successiveWA* searches are runwith decreasingweight to achieve
the best possible path in the given time for computation.

In sampling-based planners, such as the probabilistic roadmap
(PRM) and rapidly-exploring random trees (RRTs), completeness
is probabilistic; a solution will be returned, should one exist, with
a probability converging to one as the number of samples tends
towards infinity [8,9]. In practice, the RRT algorithm in particular
is capable of returning a path to the goal fairly quickly, even in
high-dimensional search spaces and subject to differential vehicle
constraints. RRTs quickly examine unexplored regions of the state
space, and are able to find paths through complicated obstacle
fields with relative ease. The trade-off, however, is in the solution
quality, as the path is often erratic due to the random sampling
which drives the expansion. Additionally, Karaman and Frazzoli
showed that the probability of the RRT algorithm converging to
the optimal solution was zero. Their development of the RRT*
algorithm, however, provides conditions for asymptotic optimality
in addition to probabilistic completeness [10]. This algorithm
has since been extended to an anytime framework, in which an
initial solution is obtained quickly and then improved upon in the
remaining time allotted [11].

The representation of the input and search spaces is also a
factor in selecting the method to use. In [12], a discretized set of
control inputs was used to compute a path for nonholonomic ve-
hicles, with numerical integration performed during the planning
process. Graph search was then utilized over a partitioning of the
configuration space to determine a sequence of control inputs that
brought the vehicle from its initial position to a goal region. A sim-
ilar approach was taken by [13], with integration of control ac-
tions performed offline and stored for use with an online planner;
solutions were obtained by performing a search over a tree. Pre-
computed vehicle motions can also be developed that result in a
grid-based representation of the configuration space, referred to as
a state lattice. In this framework, the state lattice is represented as
a directed graph, with vertices corresponding to specific reachable
states of the vehicle and edges indicating the dynamically feasible
motions which connect the states exactly. Such a representation is
resolution complete, i.e. it is complete with respect to the resolu-
tion at which the lattice is generated [14,15].

It is important to note that when using pre-computed control
input and state histories, the ability of the vehicle to track the re-
sulting motion plan is subject to model accuracy. Unmodeled dy-
namics, parametric uncertainty, and exogenous disturbances may
result in deviations from the original motion plan during execu-
tion. In the work of Burridge et al., a sequence of pre-computed
feedback controllers is used to bring the system to a desired goal
state in the presence of disturbances and obstacles in the robot
workspace [16]. This framework has also been used for motion
planning using controllers valid over regions of the free space; the
vehicle is guided to the goal region by the sequence of controllers,
with no path explicitly determined [17,18].

The approach in this paper utilizes a distinct set ofmotion prim-
itives and entails performing a graph search to find an appropriate

dynamically feasible trajectory through an obstacle environment.
The set ofmotion primitives, hereafter referred to as a library, is de-
veloped offline. State and control histories for each motion prim-
itive can be obtained through a variety of methods, for instance,
by solving an optimization problem involving the nonlinear sys-
tem equations or by recording human operator control inputs. The
task of the motion planner is to then concatenate available mo-
tion primitives to find a trajectory from the initial state to the goal.
This approach eliminates the need to solve for dynamically feasi-
ble state and control histories online. As far as the motion plan-
ner is concerned, any dynamically feasible motion primitive can
be incorporated into the library. But, since these primitives can
be generated experimentally, it is important that the primitive be
within the state-space envelope where the derived mathematical
model constitutes a reasonably accurate description of the vehi-
cle dynamics. This requirement is imposed because the proposed
control approach is model-based, as discussed later. We examine
in this paper graph-based search techniques for motion planning,
where the graph does not represent a state lattice but rather ex-
hibits a tree structure, and the edges of the graph correspond to
pre-specified motion primitives. Specifically, we develop a locally
greedy algorithm with effective backtracking ability and compare
it to a version of weighted A* based on a tree search. Both algo-
rithms are applied in simulation to a hovercraft system and evalu-
ated in environments composed of known, randomly constructed
static obstacle fields. The greedy algorithm shows an advantage
with respect to solution cost and computation timewhen relatively
large motion primitive libraries with multiple velocities are uti-
lized.

In addition, the paper provides a hybrid control approach, with
the ℓ2-induced norm as the performance measure, to ensure that
the system tracks the desired trajectory generated by the motion
planning algorithmdespite various disturbances anduncertainties.
The hybrid systems of interest in this paper are composed of
linear time-varying (LTV) subsystems obtained from linearizing
the nonlinear system equations describing the vehicle dynamics
about the library of pre-specified primitives. The switching
between these subsystems and ultimately their corresponding
subcontrollers is dictated by the motion planning algorithm. The
synthesis solution is provided in terms of a semidefinite program,
and is based on the results of [19,20]. Related to this work is the
paper [21] which provides a hybrid dynamics framework for the
design of guaranteed safe switching regions using reachable sets.
The paper [22] also gives a control algorithm for maneuver-based
motion planning,which is robust to a certain class of perturbations.

The paper is organized as follows. Section 2 presents the de-
terministic search methods used in this paper. Section 3 provides
a control result for hybrid LTV systems. Section 4 gives a detailed
implementation of the motion planning and control methods on
a hovercraft system. This paper serves as an extension of the re-
sults presented in the conference paper [23], and provides addi-
tional details regarding the implementation of the methodology.
The intent of this paper, borrowing terminology from [4], is to pro-
vide a framework for sound motion planning, where the devised
plan guarantees a collision-free trajectory despite possible distur-
bances, measurement errors, and other uncertainties.

The notation ismostly standard.We denote the set of real n×m
matrices by Rn×m. The adjoint of an operator X is written X∗, and
we use X ≺ 0 to mean it is negative definite. The normed space of
square summable vector-valued sequences is denoted by ℓ2. It con-
sists of elements x = (x0, x1, x2, . . .), with each xk ∈ Rnk for some
nk, having a finite 2-norm ∥x∥ℓ2 defined by ∥x∥2ℓ2 =


∞

k=0 |xk|
2

<∞, where |xk|2 = x∗kxk.
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