
Robotics and Autonomous Systems 61 (2013) 1440–1449

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Path planning with obstacle avoidance based on visibility binary
tree algorithm
Abdulmuttalib Turky Rashid a,∗, Abduladhem Abdulkareem Ali b, Mattia Frasca c,
Luigi Fortuna c

a Electrical Engineering Department, University of Basrah, Basrah, Iraq
b Computer Engineering Department, University of Basrah, Basrah, Iraq
c DIEEI, Faculty of Engineering, University of Catania, Catania, Italy

h i g h l i g h t s

• A new algorithm for robot navigation, referred to as visibility binary tree algorithm is introduced.
• The construction of this algorithm is based on the visible tangents between robot and obstacles.
• The shortest path is run on top of the visibility binary tree.
• The performance is compared with three different algorithms for path planning.

a r t i c l e i n f o

Article history:
Received 19 November 2012
Received in revised form
5 July 2013
Accepted 15 July 2013
Available online 23 July 2013

Keywords:
Path planning
Obstacle avoidance
Visibility graph
Bresenham algorithm

a b s t r a c t

In this paper, a novelmethod for robot navigation in dynamic environments, referred to as visibility binary
tree algorithm, is introduced. To plan the path of the robot, the algorithm relies on the construction of the
set of all complete paths between robot and target taking into account inner and outer visible tangents be-
tween robot and circular obstacles. The paths are thenused to create a visibility binary tree on top ofwhich
an algorithm for shortest path is run. The proposed algorithm is implemented on two simulation scenar-
ios, one of them involving global knowledge of the environment, and the other based on local knowledge
of the environment. The performance are compared with three different algorithms for path planning.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Path planning and obstacle avoidance are two important as-
pects of autonomous mobile robot navigation. Based on the sensor
information available, the approaches to path planning can be clas-
sified into global and local methods [1,2]. In global methods, the
robot plans its trajectory on the basis of a global information on the
environment [3]. This approach guarantees the convergence of the
robot path to the target, and also indicates if the goal is reachable
or unreachable. On the other side, planning approaches based on
sensors providing limited (local) information, although of simpler
implementation, do not guarantee the global convergence to the
target [4], since the robot uses its sensors to locate nearby obsta-
cles at each control cycle and to plan the next action to be executed.

∗ Corresponding author. Tel.: +964 7806325288.
E-mail addresses: muttalib_63@yahoo.com, abdturky@gmail.com (A.T. Rashid),

Abduladem1@yahoo.com (A.A. Ali), mfrasca@diees.unict.it (M. Frasca).

Many techniques for path planning in the presence of obsta-
cles employ a Voronoi diagram under the hypothesis either of a
global [5] or a local knowledge scenario [6]. In the global knowl-
edge scenario the assumption is that each robot has complete in-
formation about all obstacles in the environment, while in the local
knowledge scenario the information of each robot is limited to
its sensing range. In approaches based on the Voronoi diagram,
the planned trajectory is either a piecewise linear trajectory or a
smooth path. In the first case, the robots have to stop at each of the
trajectory segments end, change its orientation according to the
next segment and then restart again. This kind of motion is dis-
agreeable and leads to additional waste of power. In order to get a
smooth path, the use of different curves instead of linear segments
has been proposed. An example is the use of Voronoi diagram for
smooth path planning and better obstacle avoidance by iterative
enhancement proposed in [7]. Another example is the use of Bezier
curves. Smooths paths that are reliable with robot dynamics are
generated by using Bezier curves of degree three [8]. Time opti-
mality [9], navigation in presence of corridor constraints [10] and

0921-8890/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.robot.2013.07.010

http://dx.doi.org/10.1016/j.robot.2013.07.010
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2013.07.010&domain=pdf
mailto:muttalib_63@yahoo.com
mailto:abdturky@gmail.com
mailto:Abduladem1@yahoo.com
mailto:mfrasca@diees.unict.it
http://dx.doi.org/10.1016/j.robot.2013.07.010


A.T. Rashid et al. / Robotics and Autonomous Systems 61 (2013) 1440–1449 1441

curvature control [11,12] are other issues of navigation control ad-
dressed with approaches based on the use of Bezier curves. These
approaches produce smooth paths but often require longer trajec-
tories to the target.

Another class of methods for path planning is based on the use
of graph search algorithms for shortest path. In such approaches,
first the graph of possible paths is built and then a shortest path
search algorithm is applied on such graph. The visibility graph
can be used for this purpose: this is a graph of visible obstacle
vertices (obstacles are assumed to be polygonal), where a vertex
V is defined as visible from a vertex U if the segment VU does not
intersect any obstacle edges in the environment [13,14]. A general
limitation of methods based on graph is the computation time for
shortest path calculation. For this reason, a simplification of the
graph structure to be explored may result in an improvement of
the efficiency of these methods. This is the idea underlying the
introduction of other graphs instead of the visibility graph. Several
works use, for instance, the so-called tangent visibility graph. The
tangent visibility graph is defined as the set of possible trajectories
obtained from visibility graph by retaining only the edges which
are bi-tangent to convex obstacle vertices [15,16]. The tangent
visibility graph has a lower number of vertices and edges than the
visibility graph. This leads to a more efficient process of shortest
path calculation for the graph. As concerns the algorithms for
finding the shortest-path the Dijkstra’s algorithm is used on a full
visibility graph in [17]. The search can be optimized by running it
on the tangent graph as in [18,19], instead on the visibility graph.

The aim of this paper is to introduce a new algorithm for path
planning based on a further simplification of the graph structure
used. The resulting graph, which we name the visibility binary tree,
is derived from the tangent visibility graph. We assume that the
robot and the obstacles have circular shapes, that the robot radius
is R and that the obstacle radius is the sum of the physical space
occupied by the obstacle and the radius of the robot. The visibil-
ity binary tree is built starting from all possible paths between the
robot position and the target and optimizing the structure by re-
ducing redundant edges. After this step, an ad hoc searching algo-
rithm is runon this graph. In fact, thanks to the simplified structure,
the searching phase is also optimized. A further contribution of this
work is the use of a Bresenham algorithm for low level trajectory
planning. This has the advantage of requiring few computational
resources, so that the whole algorithm introduced in this paper is
aimed at reducing the computational resources required for its im-
plementation.

The rest of the paper is organized as follows. Section 2 describes
the low level of trajectory planning of the robot. Section 3 develops
the theoretical analysis, describing the visibility binary tree algo-
rithm. In Section 4, the visibility binary tree algorithm has been
tested in two scenarios. Finally, Section 5 draws the conclusions of
the paper.

2. Low level of trajectory planning

In this section, we briefly discuss the low level trajectory plan-
ning of the robot. The low level trajectory planning aims at im-
plementing the routines needed for a robot to follow a given
trajectory, whereas this trajectory is the result of the high level
path planning. In particular, in this section we briefly discuss the
kinematics of the robot and the Bresenham algorithm used to im-
plement robot motion along a straight line or an arc line.

Although Bresenham algorithms [20]were developed for draw-
ing lines and circles on a pixelated display systems such as
VGAs [21], in our work we apply them to implement the low level
of trajectory planning. In pixelated display systems a line is defined
as a set of points (pixels in the screen), in our approach we rep-
resent the trajectory of robot to be computed as a set of succes-
sive positions in the plane (points in the plane). So, we establish an

Fig. 1. Illustration of the Bresenham line algorithm.

analogy between pixels and points in the plane. To the best of our
knowledge, this is the first time in which these algorithms are ap-
plied to trajectory planning. There are several useful characteristics
in these algorithmsmotivating this choice: they are fast incremen-
tal algorithms and use only integer calculations; all multiplications
are by 2 and thus can accomplished with a simple left shift in-
struction. These characteristics make these algorithms particularly
suitable for implementation in hardware systems with limited
available resources.

Let us first discuss the Bresenham line algorithm, which we use
to implement planning of a straight line trajectory. Consider as
in Fig. 1 a two-dimensional grid of points in the space where the
robot moves. Assume that the robot initial position is (x0, y0), the
direction to follow is given by the straight line shown in Fig. 1 and
that the final end point is (xE, yE). The objective of the algorithm is
to derive the sequence of positions in the grid in which the robot
has tomove to follow in an approximateway the depicted line. This
is accomplished by moving at each step to the next position along
the x axis (i.e., from xk to xk+1) and then by selecting which of yk or
yk+1 is the closest coordinate to the line (the points in the grid are
indicated as (xk, yk) where k is an index labeling the points in the
grid). Thus, the algorithm essentially has to choose at each step the
value of the y coordinate. This is done by calculating at each time
step a decision parameter pk.

The algorithm can be described by the following steps:
1. start from the two line end points (x0, y0) and (xE, yE) and

calculate the constants 1x = xE − x0 and 1y = yE − y0.
2. calculate the first value of the decision parameter as:

p0 = 21y − 1x. (1)

3. for each value of xk along the line, perform the following test. If
pk < 0, the next point to be selected is (xk+1, yk) and:

pk+1 = pk + 21y. (2)

Otherwise, the next point to be selected is (xk+1, yk+1) and:

pk+1 = pk + 21y − 21x. (3)

4. repeat step 4 until (xE, yE) is reached.

Let us now discuss the Bresenham circle algorithm we used to
derive a circular trajectory of the robot. The algorithmassumes that
the circle is centered at the origin, so that the circle has a eight-
way symmetry and it suffices to calculate the locations of the robot
in one of the octants. We will refer to the original coordinates as
(X, Y ) and to the coordinates in the reference frame where the
circle is centered in the origin as (x, y). Analogously to the case of
the Bresenham line algorithm, at each step the new position xk+1
is selected and the algorithm has to choice which coordinate yk or
yk−1 is closest to the circle boundary. This is done by testing if the
mid point between yk and yk−1 is inside the circle or not, i.e., if
f (x, y) , x2 + y2 − r2 calculated at the mid point is negative or
positive. This idea can be accomplished in an incremental way by
the following steps (see Fig. 2):



Download English Version:

https://daneshyari.com/en/article/411342

Download Persian Version:

https://daneshyari.com/article/411342

Daneshyari.com

https://daneshyari.com/en/article/411342
https://daneshyari.com/article/411342
https://daneshyari.com

