FISEVIER

Contents lists available at ScienceDirect

International Journal of Pediatric Otorhinolaryngology

journal homepage: www.elsevier.com/locate/ijporl

Pediatric myringoplasty: A study of factors affecting outcome

Monika Knapik¹, Issam Saliba*

Sainte-Justine University Hospital Center, 3175, Côte Sainte-Catherine, Department of Pediatric Otorhinolaryngology, Montreal (Qc) H3T 1C5, Canada

ARTICLE INFO

Article history: Received 24 January 2011 Received in revised form 15 March 2011 Accepted 15 March 2011 Available online 9 April 2011

Keywords:
Perforation
Tympanic membrane
Age
Outcome
Success
Myringoplasty
Tympanoplasty

ABSTRACT

Objectives: To analyze the success rates of myringoplasty in children, to assess prognostic factors and to evaluate their interactions in the evolution of myringoplasty.

Methods: Charts of patients who had undergone a myringoplasty between 1997 and 2007 were reviewed for: patient age, sex, perforation side, etiology, size, type and location of perforation, season of surgery, type of myringoplasty, surgical technique, graft material, preoperative status of the operated and contralateral ear, history of otologic surgery to the operated and/or contralateral ear, number of prior surgeries to the operated and contralateral ear, time elapsed between the last otologic procedure and this myringoplasty, history of adenoidectomy or tonsillectomy, time elapsed between the adenoidectomy or tonsillectomy and this myringoplasty. Anatomical success was defined as postoperative intact tympanic membrane(TM). Audiological success was defined as air bone gap less than 20 dB and a postoperative difference of no more than 10 dB in the mean bone conduction (BC) threshold.

Results: A total of 201 cases of myringoplasty were operated between 1997 and 2007. Anatomical success rates were 94.9%, 84.9% and 70.1% at 6, 12 and 24 months, respectively. The type of previous otologic surgery in the operated ear was found statistically significant for anatomical success. Audiological success rates were attained in 97.4%, 93.4% and 84.9% of patients at 6, 12 and 24 months, respectively. A mean reduction of 9.1 dB of the air bone gap was achieved postoperatively. No sensorineural hearing loss occurred. Children 12 years and older presented with statistically poorer preoperative BC at frequencies ≥2000 Hz when compared to their younger counterparts. These results suggest that the chronicisation of the TM perforation can result in long-term irreversible damage to the inner ear.

Conclusion: The type of previous otologic surgery in the operated ear was found to have an impact on anatomical success. The outcome for myringoplasty was more favourable when the etiology of the previous surgery was a benign one. We advocate early myringoplasty, preferably above the age of 6. Delaying surgery can cause permanent damage to the inner ear. All other factors evaluated were not found to be statistically significant for anatomical or audiological success.

© 2011 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Myringoplasty is one of the most commonly performed surgical operations in children. The most prevalent etiologies for tympanic perforations in children are complicated otitis media, iatrogenic perforations from previous installation of myringotomy tubes and traumatic perforation of the eardrum. For the minority that do not resolve after a period of six months, myringoplasty is to be considered [1].

Despite its relatively common use in the pediatric population, myringoplasty remains a controversial subject and its success rates

vary widely throughout the literature. The main topics of debate are the optimal age for the procedure, its indications as well as the choice of the surgical technique. Cochlear function is generally excellent in children allowing for a high probability of restoration and preservation of hearing [2,3]. A significant hearing loss may be the result of a large perforation, which may have further repercussions on speech and language development. These repercussions become especially significant if the hearing impairment occurs at a young age [2,4]. Another important argument in favour of myringoplasty is to hinder the migration of the squamous epithelium cells into the middle ear to form a cholesteatoma [3,5]. Overall, valuable arguments can be made for both proceedings, where myringoplasty can be performed at a young age or delayed until the child is older. The absence of precise selection criteria, as well as the diverging opinions concerning the timing and the indications for myringoplasty generates confusion not only for medical professionals, but also for the parents who are the ultimate decision makers in the postponement of their child's

^{*} Corresponding author at: CHU Sainte-Justine, 3175, Côte Sainte-Catherine, Department of Otolaryngology, Head & Neck Surgery, Montreal (Qc) H3T 1C5, Canada. Tel.: +1 514 345 4857; fax: +1 514 737 4822.

E-mail address: issam.saliba@umontreal.ca (I. Saliba).

¹ Tel.: +1 514 345 4857; fax: +1 514 737 4822.

Table 1 Anatomical and audiological success rates for evaluated factors.

Variable	Criteria	N	Anatomical success: p value	Audiological success: p value
Sex	Female Male	96 105	p=0.733	p=0.230
Side of perforation	Right Left	83 118	p = 0.271	p = 0.337
Season	Winter ^a Spring Summer Fall	46 62 46 47	p = 0.200	p=0.028
Etiology of perforation	Otitis media Adhesive otitis Unknown Recurrent perforation, trauma, previous tubes	55 35 30 81	p=0.363	p=0.911
Location of perforation	Anterior ^b Posterior Antero-posterior ^a	52 39 83	p = 0.767	p = 0.026
Size of perforation	Grade I Grade II Grade III Grade IV ^a Intact	58 47 35 31 26	p=0.815	p=0.020
Type of perforation	Marginal Central	36 137	p = 0.635	p=0.716
Operated ear	Dry Wet	195 6	p=0.428	p=0.549
Previous otologic surgery of the operated ear	Previous surgery Operated once Operates twice Operated three times or more Type M/T Other otologic surgery N years elapsed since surgery	143 86 40 17 105 38	p = 0.457 p = 0.552	p = 0.947 p = 0.372
Contralateral ear	(range 0.17-12 yrs) (mean 4.6 ± 3.01 yrs)	153		
Contralateral ear	Dry Wet	38	p=0.913	p = 0.419
Previous otologic surgery of the controlateral ear	Previous surgery Operated once Operates twice Operated three times or more Type M/T	125 73 34 18	p = 0.194	p=0.266
	Other otologic surgery N years elapsed since surgery (range 0.25–12 yrs) (mean 4.66 ± 3.23 yrs)	30	p=0.436	p=0.756
Adenoidectomy	Adenoidectomy N years elapsed since (range $0.08-15$ yrs) (Mean 6.27 ± 3.81 yrs)	76	p = 0.900 p = 0.341	p = 0.752 p = 0.278
Tonsillectomy	Tonsillectomy N of years elapsed since (range 1–11 yrs) (Mean 5.33 ± 3.29 yrs)	42	p = 0.475 p = 0.241	p = 0.619 p = 0.374
Type of myringoplasty	Type I Type I+myringotomy tube	179 15	p = 0.050	p = 0.136
Surgical technique	Underlay Overlay	178 22	p = 0.123	p = 0.837
Surgical approach	Endaural Post-auricular	105 96	p = 0.466	<i>p</i> = 0.721
Graft material	Temporal fascia Perichondrium	140 60	p = 0.141	<i>p</i> = 0.947

N: number and M/T: myringotomy with tube insertion.

Bold values represent a statistically significant difference.

a Poorest outcome.

b Potton automa.

^b Better outcome.

Download English Version:

https://daneshyari.com/en/article/4113477

Download Persian Version:

https://daneshyari.com/article/4113477

<u>Daneshyari.com</u>