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HIGHLIGHTS

e An affordance learning system is designed.

o The affordance memory is modeled with a modified growing neural gas network.

e The system can explore grasp postures efficiently in the synergy space.
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In this paper, we present an affordance learning system for robotic grasping. The system involves three
important aspects: the affordance memory, synergy-based exploration, and a grasping control strategy
using local sensor feedback. The affordance memory is modeled with a modified growing neural gas
network that allows affordances to be learned quickly from a small dataset of human grasping and object
features. After being trained offline, the affordance memory is used in the system to generate online motor
commands for reaching and grasping control of the robot. When grasping new objects, the system can
explore various grasp postures efficiently in the low dimensional synergy space because the synergies
automatically avoid abnormal postures that are more likely to lead to failed grasps. Experimental results
demonstrated that the affordance memory can generalize to grasp new objects and predict the effect of
the grasp (i.e., the tactile patterns).

© 2013 Elsevier B.V. All rights reserved.

1. Introduction
1.1. Affordances in robots

Psychologist James J. Gibson originally defined affordances as all
“action possibilities” latent in the environment, objectively mea-
surable and independent of the individual’s ability to recognize
them, but always in relation to the actor and therefore dependent
on their capabilities. However, Gibson’s definition of affordances
does not provide any clue on how to represent or implement affor-
dances in robotics.

Most of the works on robot affordance learning address one
of the several parts/correlations of Gibson’s affordance concepts.
Paletta et al. [1] demonstrated the learning of causal relations be-
tween visual cues and associated anticipated interactions. In [2], a
robot builds probabilistic models about the conditions for success-
ful interactions, which they call environmental affordances. Mon-
tesano and Lopes [3] proposed an algorithm to learn local visual
descriptors of good grasp points. Akgun et al. [4] studied the ef-
fect aspect of affordance: they clustered the effect features to gen-
erate a set of effect categories using unsupervised learning. Detry
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et al. [5] defined object affordances as the object-gripper relative
configurations that lead to successful grasps. Sun et al. [6] learned
the visual object categories, rather than the direct visual features,
and used them as an intermediate representation, in order to make
the affordance learning problem scalable when learning from lim-
ited datasets.

Currently, in robots, an affordance is usually learned in the
context of an on-going interaction with the world. In [7], the af-
fordance representation of tools is learned during a behavioral
babbling stage in which the robot randomly chooses different ex-
ploratory behaviors, applies them to the tool, and observes their
effects on environmental objects. As a result of this exploratory
procedure, the tool representation is grounded in the behavioral
and perceptual repertoire of the robot. Erdemir [8] models af-
fordances in a robot as statistical relations among actions, object
properties and the effects of actions on objects. The robot learns
the affordance using internal rehearsal. Montesano et al. [9] uses
Bayesian networks to encode the dependencies between the ac-
tions, object features and the effects of these actions while a hu-
manoid robot interacts with objects.

Another functional module related to affordances is the value
system. As reviewed by Lungarella and Metta [10], value sys-
tems appear to exist in n to mediate neural plasticity and mod-
ulate learning in a self-supervised and self-organized manner.
They allow organisms to learn autonomously via self-generated
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activity, and they gate the current behavioral state, or act as inter-
nal mediators of value and environmental saliency. Oudeyer and
Kaplan [11] proposed a value system for robots called Intelligent
Adaptive Curiosity, which involves curiosity and intrinsic moti-
vation; the motivation being to maximize the learning progress.
Huang and Weng [12] introduced an inherent hard-wired value
system that has three components: punishment, reward, and nov-
elty. This value system guided the development of a robot’s senso-
rimotor skills through online interaction with the environment.

In summary, most of these robotics studies on affordance learn-
ing have two characteristics:

(1) Most of them are focused on the perception aspect of the af-
fordance concept. Very few works have demonstrated how the
learned affordance could improve the robot’s control or perfor-
mance.

(2) The learning process demands a large number of trials when
the robot explores the object/environment or interacts with
humans, which may be time-consuming, inefficient and im-
practicable.

The affordance learning system in this study is designed for
real-time grasping control, rather than for perception. It learns
the affordances from human grasping data, thus avoiding a long
and costly exploration process in the robot. More importantly,
by generalizing the learned affordances, our system can facilitate
affordance learning and grasping control on new objects. Although
it is not new for a robot to learn motor skills by imitating human
behavior, one novelty of our system is that we use synergies to
reduce dimensionality for the learning. As will be shown in the
experiments, when the robot grasps a new object that is not in its
training set, synergies make the exploration much more efficient.

1.2. Affordance learning algorithms

One central issue in robot affordance learning is, how to repre-
sent the affordances? [9] used Bayesian networks as a general tool
to learn the affordance in grasping visa the interaction between
the robot and human. By using Bayesian inference, the robot was
able to predict the action and effects using the available informa-
tion. In [1], affordances were learned by reinforcement learning of
predictive perceptual states. [6] developed a probabilistic graphi-
cal model to describe the relationships between object categories,
affordances, and appearance. Another widely used method for af-
fordance learning in robots is the Self-organizing Map. In [4], ef-
fect features are clustered using SOM to generalize effects. [13] use
SOM to associate the object invariant descriptors to the success or
failure of an action.

In this study, we have designed a novel method, called Reverse
Neural Gas, for modeling the associative memory and learning
the grasping affordances. As will be shown below, the proposed
method performs batter than SOM and can learn the affordances
quickly with a limited training dataset.

1.3. Robotic grasping

Grasp synthesis, determining an appropriate hand position/
orientation and posture to grasp a specific object, is not an
easy task for robots (see [14] for a review). Methods for grasp
synthesis can be divided into two categories. One category
is analytical grasp synthesis that use kinematics or dynamics
criteria (e.g., form closure, force closure, and equilibrium) to es-
timate the quality/stability of grasps, and search for grasps that
optimize these measures. These methods usually demands precise
models of the objects and accurate sensing of the interaction be-
tween the fingers and the objects, which are often infeasible in
real-time applications. The other category is empirical methods

that avoid the inherent difficulties of analytical methods by at-
tempting to mimic human grasping strategies [15]. The grasping
control structure we designed in this paper belongs to this sec-
ond category. Empirical methods reduce possible hand postures
to a limited number of standard grasps. Unlike analytical methods
that plan the grasp before executing it, empirical methods use au-
tomated local control schemes and immediate sensory feedback
at fingers, an example of which is the study of Teichmann and
Mishra [16]. They equipped a two-fingered gripper with distance
and angle sensors then, using a simple reactive algorithm based
on the immediate feedback from these sensors, the gripper could
grasp objects of unknown geometry and dynamics [ 16].

1.4. Synergies in human grasping

While grasp synthesis is still a tough problem for robot hands,
humans can grasp and manipulate various objects effortlessly. One
challenge in robotic grasping is how to coordinate the several joints
of the fingers to generate an appropriate grasp posture for a specific
object. Humans and animals have the same problem in the motor
control of their huge number of muscles. Selecting the appropriate
muscle pattern to achieve a given goal is an extremely complex
task due to the high dimensionality of the search space [17]. Recent
research in biology suggests that, to deal with this dimensionality
problem, animal motor controllers employ a modular organization
based on synergies [17,18]. A synergy refers to a subgroup of
muscles or joints that are activated together in a stereotyped
pattern [17], which is in contrast to the decoupled control of
individual joints in many robots. d’Avella and Bizzi [17] recorded
electromyographic activity from 13 muscles of the hind limb of
intact and freely moving frogs during their movements, and used
multidimensional factorization techniques to extract synergies,
that is, invariant amplitude and timing relationships among the
muscle activations. They have found, in frogs, that combinations
of a small number of muscle synergies account for a large fraction
of the variation in the muscle patterns observed during jumping,
swimming, and walking [17].

Particularly in human hands, synergies refer to the muscular
and neurological coupling between the finger joints. The human
hand has more than 20 degrees-of-freedom. But, two synergies
that co-activate several fingers and joints have been shown to
account for 84% of the variance in human hand grasping [19]. The
big benefit of synergies is that the computations for motor control
can be greatly simplified at the synergy level.

In our previous study [20], we extracted three synergies from
human grasping postures and then mapped them to a robot hand.
In this study, we map the human hand postures to the robot hand
first, and then extract synergies from the robot hand postures,
rather than the human hand postures. Thus, the exploration for
grasping new objects will be implemented in the synergy space of
a greatly reduced dimensionality.

1.5. The aim of this study

The aim of this study is to learn grasping affordances from hu-
man data and apply them to robotic grasping. The learning involves
three stages. Firstly, we map the human grasps to a robot hand and
extract synergies from them. Secondly, the affordance memory is
trained offline with these data. Finally, the affordance memory is
used for online control of the robot to grasp objects. The main con-
tributions of this study are:

(1) By modifying the neural gas method, we developed a new
learning algorithm for affordance learning in robotic grasping,
which can learn the affordances quickly with a small dataset
and generalize well when grasping new objects.
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