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a b s t r a c t

Autonomous navigation in unstructured environments is a complex task and an active area of research
in mobile robotics. Unlike urban areas with lanes, road signs, and maps, the environment around our
robot is unknown and unstructured. Such an environment requires careful examination as it is random,
continuous, and the number of perceptions and possible actions are infinite.

We describe a terrain classification approach for our autonomous robot based on Markov Random
Fields (MRFs) on fused 3D laser and camera image data. Our primary data structure is a 2D grid whose
cells carry information extracted from sensor readings. All cells within the grid are classified and their
surface is analyzed in regard to negotiability for wheeled robots.

Knowledge of our robot’s egomotion allows fusion of previous classification results with current
sensor data in order to fill data gaps and regions outside the visibility of the sensors. We estimate
egomotion by integrating information of an IMU, GPSmeasurements, andwheel odometry in an extended
Kalman filter.

In our experiments we achieve a recall ratio of about 90% for detecting streets and obstacles. We show
that our approach is fast enough to be used on autonomous mobile robots in real time.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Autonomous navigation in unstructured environments is a
current and challenging task in robotics. Mobile systems need
a detailed interpretation of the surrounding terrain to avoid
obstacles and to regard the negotiability of the surface. Modern 3D
laser range finders (LRFs) provide a rich and thorough picture of
the environment in the form of 3D distance measurements. The
vast amount of data acquired by 3D LRF makes it infeasible to use
directly for a path planning algorithm. Therefore, as a first step,
a reduction of the large point cloud is necessary and an efficient
data structure is essential. Our work was motivated by the terrain
analysis performed by Neuhaus et al. [1], where a two dimensional
grid structurewas introduced to provide fast access to negotiability
estimates.

Differentiation between different surfaces from laser range
measurements alone is a difficult task. A second type of sensor
can providemore information for surface structures. By calibrating
three cameras to our LRF we are able to access the fused data
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in one coordinate system. This allows us to determine color and
texture information of the 3D points in the field of view of
each camera. In unstructured environments, classification of the
terrain can be challenging due to sensor noise, varying density
of the data, egomotion or percussions on rough terrain. For that
reason we apply a Markov random field (MRF) to add context-
sensitive information to the terrain classification, which models
the relationships in our data structure.

In order to interpolate data gaps and regions with sparse sensor
data, our MRF accesses previous classification results. An extended
Kalman filter (EKF) works on fused inertial measurement unit
(IMU), Global Positioning System (GPS), and wheel odometry data
to estimate the egomotion of our robot. The result is refined using
the 2D Iterative Closest Point (ICP) algorithm based on virtual 2D
scans extracted from the data of our 3D LRF.

Our goal is to determine the negotiability of the surrounding
terrain with a MRF in real time based on the sensors described
Section 2. Therefore, we discuss related work in Section 3 before
describing our terrain classification approach with MRFs in detail
in Section 4. Experiments and results are depicted in Section 5. A
conclusion is given in Section 6.

2. Hardware

As shown in Fig. 1 we use a Velodyne HDL-64E S2 [2] and
two different camera types. The head of the Velodyne consists of
64 lasers which permanently gather data of the environment as
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Fig. 1. Deployed sensors and robot: A 3D laser range finder and two different commercially available cameras are used to perceive the environment. Sensors are mounted
on top of a 500 kg outdoor robot.

the head spins at a frequency of up to 15 Hz around the upright
axis. The sensor thereby produces a rich dataset of 1.8 million
distance measurements per second. The data points of one full
rotation are accumulated into one point cloud. A Logitech HD
Pro Webcam C910 [3] is installed to the front and two Philips
SPC1300NC [4] cameras are fixed on the left and the right side of
the construction. The sensors are eithermounted on top of a 500 kg
robot (autonomous driving), the Mustang MK I (cf. Fig. 1), or on a
car (recording of sensor data). We further use a Navilock NL-302U
GPS receiver, an xSens MTi IMU, and a Speed Wedge SW01 radar-
based speed sensor.

3. Related work

This work was motivated by results from image processing,
terrain classification, and probabilistic robotics. The following
presentation of the state of the art is therefore separated into image
processing (Section 3.1), terrain classification (Section 3.2), and
egomotion (Section 3.3).

3.1. Image processing

Image segmentation is a fundamental task in many computer
vision applications. MRFs have been frequently used in this field,
especially for segmentation tasks.

Szirányi et al. [5] address the problem of the huge amount
of computing power required for Markovian approaches. They
introduce a fully-parallel architecture for MRF segmentation of
images and show that the Markovian labeling approach can be
implemented in fully parallel cellular network architectures.

Meas-Yedid et al. [6] use a MRF clustering approach for color
segmentation based upon color and spatial information. Their ap-
proach proves robust against noise, marker color changes, illumi-
nation changes, and blurring during the performed experiments.

A MRF image segmentation model that combines color and
texture features is presented by Kato and Pong [7]. Segmentation
is obtained by classifying pixels into different pixel classes, which
are represented by multi-variate Gaussian distributions either
computed of training data or estimated from the input image.

Qazi et al. [8] present a segmentation methodology with
robust parametric approximations proposed for multichannel
linear prediction error distribution. They use a region-size-based
energy termwith the conventional Potts energymodel and present
improved results in terms of percentage errors of color texture
segmentation in the case of high-resolution multispectral satellite
images.

D’Angelo et al. [9] provide aMRF description of an unsupervised
color image segmentation algorithm. Their system is based on a
color quantization of the image in the Lab color space and uses a
fuzzy k-nearest neighbors algorithm.

Besides color images, RGB-D sensors like the Microsoft Kinect
emerged and granted the opportunity of color, texture and depth

data in one dataset. Herbst et al. [10] use an RGB-D camera and
apply a multi-scene MRF model to detect objects that moved
between multiple visits to the same scene. By combining shape,
visibility and color cues, their approach is able to detect objects
even without texture within the scenes.

A MRF that integrated high-res image data into low-res range
data was presented by Diebel and Thrun [11]. Their MRF exploits
the fact that discontinuities in range and coloring tend to co-align
and recovers the range data at the same resolution as the image
data.

3.2. Terrain Classification

There exist various approaches to classify the terrain surround-
ing an autonomous mobile robot platform. Especially image- or
laser-based strategies are wide spread when terrain negotiability
information is needed.

Image-based strategies either use a single, stereo or combined
setup of digital and infrared cameras. Konolige et al. [12] and
Alberts et al. [13] both use stereo vision approaches to maneuver a
vehicle through unstructured environments. Stereo vision allows
them an extraction of traversable regions from the camera video
streams. Furthermore, Vernaza et al. [14] present a camera-based
terrain classification approach for the DARPA LAGR program. Their
approach uses a MRF that classifies image data of a stereo system
into obstacles or ground regions for an autonomous robot.

Negative obstacles (non-negotiable regions underneath the
ground level) present a difficult challenge in non-urban environ-
ments. Thermal infrared images have the characteristic that nega-
tive obstacles remain warmer than the surrounding terrain in the
night. Rankin et al. [15] therefore combine thermal signatures and
stereo range data to determine the terrain negotiability.

Laser-based approaches either work with a 2D, 2D sensors on
steppermotors or a 3D LRF.Wurmet al. [16] use the laser remission
value of a 2D LRF on a pan-tilt unit to classify the surface terrain
based on the resulting 3D scans. In this way, they can detect grass-
like vegetation and prefer paved routes with their robot.

Another approach for terrain classification is presented byWolf
et al. [17]. Their robot uses a 2D LRF oriented to the ground, records
data while driving and produces 3D maps using Hidden Markov
models. The authors are able to differentiate flat areas from grass,
gravel or other obstacles.

Vandapel et al. [18] segment 3D distance measurements and
classify the segments into three different classes for terrain surface,
clutter or wires. Their approach worked with a detailed stationary
3D sensor as well as on a mobile platform with a rotating 2D
scanning mount.

Ye and Borenstein [19,20] present an algorithm for terrain
mappingwith a 2D LRF. Their LRF ismounted at a fixed angle to the
ground in front of their robot and creates an elevation map while
driving.
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