
Robotics and Autonomous Systems 61 (2013) 1116–1130

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Efficient grid-based spatial representations for robot navigation in
dynamic environments
Boris Lau ∗, Christoph Sprunk, Wolfram Burgard
Autonomous and Intelligent Systems, University of Freiburg, D-79110 Freiburg, Germany

a r t i c l e i n f o

Article history:
Available online 30 August 2012

Keywords:
Incremental algorithms
Voronoi diagrams
Distance maps
Configuration space
Collision checking
Robot navigation

a b s t r a c t

In robotics, grid maps are often used for solving tasks like collision checking, path planning, and
localization.Many approaches to these problems use Euclidean distancemaps (DMs), generalized Voronoi
diagrams (GVDs), or configuration space (c-space) maps. A key challenge for their application in dynamic
environments is the efficient update after potential changes due to moving obstacles or when mapping
a previously unknown area. To this end, this paper presents novel algorithms that perform incremental
updates that only visit cells affected by changes. Furthermore, we propose incremental update algorithms
for DMs and GVDs in the configuration space of non-circular robots. These approaches can be used to
implement highly efficient collision checking and holonomic path planning for these platforms. Our c-
space representations benefit from parallelization on multi-core CPUs and can also be integrated with
other state-of-the-art path planners such as rapidly-exploring random trees.

In various experiments using real-world data we show that our update strategies for DMs and
GVDs require substantially less cell visits and computation time compared to previous approaches.
Furthermore, we demonstrate that our GVD algorithm deals better with non-convex structures, such as
indoor areas. All our algorithms consider actual Euclidean distances rather than grid steps and are easy to
implement. An open source implementation is available online.

© 2013 Published by Elsevier B.V.

1. Introduction

Many approaches in robot navigation rely on occupancy grid
maps to encode the obstacles of the area surrounding a robot.
These maps can be learned from sensor data, they are well
suited to solve problems like path planning, collision avoidance,
or localization, and they can easily be updated to reflect changes in
the environment.

In the past, several grid-based spatial representations have been
developed that can be derived from grid maps, e.g., distance maps,
Voronoi diagrams, and configuration space maps. These represen-
tations are important building blocks formanydifferent robotic ap-
plications, since they can be used to speed-up algorithms that solve
the aforementioned problems. This paper proposes incremental
update algorithms to facilitate the online use of these represen-
tations in dynamic environments. We also apply our methods to
update distance maps and Voronoi diagrams in the configuration
space of non-circular robots, e.g., to speed-up path planning or col-
lision avoidance for these types of platforms. This paper extends
our previous work on these topics [2,3] and includes additional ex-
periments for 3D distance maps and incremental updates of dis-

∗ Corresponding author. Tel.: +49 761 203 8012.
E-mail address: lau@informatik.uni-freiburg.de (B. Lau).

tance maps and Voronoi diagrams in the context of simultaneous
localization and mapping (SLAM).

The generalized Voronoi diagram (GVD) is defined as the set of
points in free space to which the two closest obstacles have the
same distance [4]. It is a discrete form of the Voronoi graph, which
has beenwidely used in various fields [5]. In the context of robotics,
Voronoi graphs are a popular cell decomposition method for solv-
ing navigation tasks. Their application as roadmaps is an appealing
technique for path planning, since they are ‘‘sparse’’ in the sense
that different paths on the graph correspond to topologically dif-
ferent routes with respect to obstacles. This significantly reduces
the search problem and can be used for example to generate the
n-best paths for offering route alternatives to a user [6]. Also, mov-
ing along the edges of aVoronoi graph ensures the greatest possible
clearance when passing between obstacles. When Voronoi graphs
are discretized and stored as a map, they can lose their sparseness
property due to erroneous interconnections between neighboring
Voronoi lines. Our method to compute GVDs overcomes this prob-
lem with additional conditions that ensure the sparseness of the
generated GVDs.

The cells in a distancemap (DM) encode the distance to the clos-
est cell that is occupied according to the corresponding occupancy
map. Since a cell lookup only requires constant time, DMs provide
efficient means for collision checks, to compute traversal costs for
path planning, and for robot localization with likelihood fields [7].

0921-8890/$ – see front matter© 2013 Published by Elsevier B.V.
doi:10.1016/j.robot.2012.08.010

http://dx.doi.org/10.1016/j.robot.2012.08.010
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
mailto:lau@informatik.uni-freiburg.de
http://dx.doi.org/10.1016/j.robot.2012.08.010


B. Lau et al. / Robotics and Autonomous Systems 61 (2013) 1116–1130 1117

Fig. 1. For some applications, representing obstacles and robots by their 2D foot-
prints can be sufficient (top-left). For overhanging parts of robots, their load, or ob-
stacles, 2.5D representations are needed (bottom), whereas interaction tasks can
also require actual 3D obstacle and robot models (top-right). Robot shape approxi-
mations as used in our experiments are depicted in blue. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Since the computation of this transform is carried outwithout con-
sidering the shape of the robot, direct application of plain DMs is
restricted to circular approximations of the robot’s footprint.

For non-circular robots in passages narrower than their cir-
cumcircle, however, circularity is too crude an assumption, and
collisions have to be checked for in the three-dimensional con-
figuration space (c-space) of robot poses. Also, even for robots
moving on aplane as considered in this paper, 3Dobstacles and col-
lisions can be important: applications such as robotic transporters,
wheelchairs, or mobile manipulators can require the robot to par-
tially move underneath or above obstacles as shown in Fig. 1. In
these cases, collision checks easily become a dominant part of the
computational effort in path planning. However, by convolving a
map with the discretized shape of the robot, one can precompute
a collision map that marks all colliding poses. With such a map, a
collision check requires just a single lookup, even for 3D obstacle
representations.

In changing environments, precomputed GVDs, DMs, and c-
space maps have to be updated regularly to always reflect the
current state of the corresponding occupancy map. These changes
can be caused by moving people or vehicles, newly explored areas
during mapping, or when correcting a map after closing a loop in
SLAM.

In this paper, we present efficient methods to compute and up-
date these representations. Since our algorithms perform all up-
dates in an incremental way, i.e., recomputing only parts affected
by changes, they can be applied online even with large maps or
with more than two dimensions. In comparison to previous ap-
proaches, our methods require less computational effort, are easy
to implement, andwork in both indoor and outdoor environments.

Additionally, we combine DMs and GVDs with c-space collision
maps, and propose distance transformed c-spacemaps and c-space
Voronoi diagrams. These can beused for efficient collision checking
and path planning of non-circular robots. With our algorithms
described in this paper, these representations can be updated in
an incremental way as well.

After discussing related work in Section 2, we describe the
brushfire algorithm in Section 3. It can be used to compute static

DMs, and it is an important foundation for our dynamic DM and
GVD algorithms proposed in Sections 4 and 5. Section 6 describes
our dynamic c-space collision maps, followed by the c-space DM
and c-space GVD in Section 7. Our experiments are presented in
Section 8 before we conclude our paper in Section 9.

2. Related work

In the past, many different approaches have been proposed to
compute DMs, GVDs, and c-space collision maps. With the goal
of applying them online in dynamic environments, a lot of effort
has been spent on developing more efficient algorithms. However,
unlike ours, most of these approaches do not exploit the potential
of incremental updates. The remainder of this section presents
relatedwork for the different spatial representations and discusses
the contribution of our methods.

2.1. Distance maps

Many different approaches have been proposed to compute
static two-dimensional DMs, e.g., linear image traversal [8], di-
mensional decomposition [9], and distance propagation with the
brushfire algorithm [10].We review the brushfire algorithm in Sec-
tion 3. For a comparative review of other approaches please refer
to the survey by Fabbri et al. [9].

Whenever a cell in a grid map is newly occupied or vacated, the
correspondingDMhas to be updated to reflect this change. A trivial
method is to recompute distances for patches within d̂ around all
changed cells, where d̂ is an upper bound on theminimumobstacle
distance in the environment. However, this method usually
updates substantially more cells than necessary, e.g., if d̂ is high
due to large open spaces or if the changed cells cover a wide area.
Furthermore, efficiently determining the minimal update area is
not trivial, if the changes affect the occupancy of several cells.

Kalra et al. proposed a dynamic brushfire algorithm that in-
crementally updates DMs and GVDs by propagating wavefronts
starting at newly occupied or vacated cells [11]. While their
method is based on the incremental path planning algorithm D∗
by Stentz [12], the algorithmproposedhere is directly derived from
the brushfire algorithm and requires substantially less computa-
tional time for the same task due to a considerably reduced number
of cell visits.

The wavefronts of Kalra et al. accumulate 8-connected grid
steps to approximate obstacle distances [11]. This overestimates
the true Euclidean distances by up to 8.0% [13], which for
a robot implies either a collision risk or overly conservative
movements. Scherer et al. adopted and corrected Kalra’s algorithm
for their DM update method [14]. They propagate obstacle
locations rather than grid step counts to determine Euclidean
distances, which reduces the absolute overestimation error below
an upper bound of 0.09 pixel units [13]. According to Cuisenaire
and Macq, the shortest distance at which this propagation error
can occur is 13 pixels [15], which yields a maximum relative error
of 0.69%. Additionally, by propagating obstacle references, our
representations can provide the location of the closest obstacle
rather than just the distance to it, which can be appealing for
collision avoidance methods. In a recent publication, Scherer et al.
build on our original method for DM updates and combine it with
their approach to map scrolling [16].

This paper extends our DMs presented in [2] to 3D by adding
the possibility to limit the propagated distances to maintain
online feasibility in large open spaces and outdoors as proposed
by Scherer et al. [14].

Additionally, we describe how to further reduce the number of
visited neighbor cells, which increases the efficiency for 3D DMs,
and we present additional experiments.



Download	English	Version:

https://daneshyari.com/en/article/411387

Download	Persian	Version:

https://daneshyari.com/article/411387

Daneshyari.com

https://daneshyari.com/en/article/411387
https://daneshyari.com/article/411387
https://daneshyari.com/

