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a b s t r a c t

This paper deals with the problem of the global exponential stability of a class of uncertain neural
networks with discontinuous Lurie-type activation and mixed delays. By establishing a new sufficient
condition, we first prove the existence of the equilibrium point by using the Leray–Schauder alternative
theorem. Then, by employing a new Lyapunov functional, we obtain the global exponential stability of
the equilibrium point of the uncertain neural network. In the end, some comparisons and numerical
examples are given to show the improvement of the conclusions in this paper.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, neural networks have been extensively inves-
tigated since their wide applications, such as pattern recognition,
associative memories, automatic control, optimization, image
processing and other areas (see [1–8]). It is well known that the
applications of neural networks heavily depend on their stability.
Therefore, in order to successfully employ neural networks in
applications, we should study the stability of the designed neural
network in advance. However, due to the finite switching speed of
the neuron amplifiers and transmissions of signals in a network,
time delays are actually unavoidable in the electronic imple-
mentation. Meanwhile, in both biological and artificial neural
networks, the delay may create the loss of stability, since it may
originate the onset of nonvanishing oscillations (see [9–25]). On
the other hand, the estimation errors are unavoidable when we
measure the vital data of deterministic neural networks such as
the neuron fire rate and the synaptic interconnection weights.
Moreover, in deterministic neural networks, the stability of neural
networks can often be destroyed by its compulsory uncertainty

issuing from the existence of modeling errors, external dis-
turbance and parameter fluctuations. Hence, it is important and
necessary to study the robust stability of neural networks with
time delays in presence of uncertainties (see [13–15,26,27]).

In the past years, the stability of uncertain neural network has
received considerable attentions, and varieties of interesting
results have been presented in the literatures (see [10,13–15,26–
28]). For example, in [10], authors investigated the problem of the
existence, uniqueness and global asymptotic stability of the equi-
librium point for the class of neural networks with multiple time
delays and parameter uncertainties. By means of the home-
omorphism theory and Lyapunov functional method, Arik in [13]
studied the global asymptotic stability problem of dynamical
neural networks with multiple time delays under parameter
uncertainties. Guo et al. in [26] presented a systematic method for
analyzing the robust stability of a class of interval neural networks
with uncertain parameters and time delays. In [28], we studied the
global robust exponential stability of the neural networks with
possibly unbounded activation functions.

However, most of the results concerning the robust stability of
neural networks are based on a common assumption that the
activations are continuous or even Lipschitz continuous (see
[9,10,13–15,29,30]). In practice, as mentioned by [31], dis-
continuous or non-Lipschitz neuron activations have been intro-
duced into neural network systems due to their theoretical and
practical significance in recent years. Nowadays, more and more
scholars observe the importance of neural network with
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discontinuous activations (see [18,32–35,35–37]). For example, Qin
et al. in [18] studied the global exponential stability and global
convergence in finite time of neural networks with discontinuous
activations. In [38], a novel class of Cohen–Grossberg neural net-
works with delays and inverse H €o lder neuron activation func-
tions are presented. In [37], authors integrated a class of delayed
neural networks with discontinuous activations by means of the
Leray–Schauder theorem and Viability theorem. In [23], authors
investigated the global dynamics of equilibrium point for delayed
competitive neural networks with different time scales and dis-
continuous activations.

Inspired by previous studies, in this paper, we will study the
existence, global exponential stability of uncertain neural net-
works with discontinuous Lurie-type activation and mixed delays.
The remainder of this paper is arranged as follows. In Section 2, we
state some preliminaries including some necessary definitions and
lemmas. Our main results are contained in Sections 3 and 4, where
the sufficient conditions are given to guarantee the existence and
global exponential stability of equilibrium for neural networks in
this paper. Section 5 presents some illustrative numerical exam-
ples to verify our results.

Notation: Given the column vector x¼ ðx1; x2;…; xnÞT , where the
superscript T is the transpose operator, and JxJ≔ðPn

i ¼ 1 x
2
i Þ

1
2. Let

A¼ ðaijÞARn�n and define JAJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λMðATAÞ

q
, where λMðAÞ stands

for the operation of taking the maximum eigenvalue of A. IARn�n

is the n� n identity matrix. For a real symmetric matrix A, Ao0
means that A is negative definite.

2. Preliminaries

In this section, we will introduce some definitions and lemmas,
which will be used in the remainder of this paper. The neural
network we consider in this paper is described as follows:

dxiðtÞ
dt

¼ �dixiðtÞþ
Xn
j ¼ 1

aijgjðxjðtÞÞþ
Xn
j ¼ 1

bijgjðxjðt�τjÞÞ

þ
Xn
j ¼ 1

cij

Z t

t�hj
gjðxjðsÞÞ dsþui; ð1Þ

or equivalently,

_xðtÞ ¼ �DxðtÞþAgðxðtÞÞþBgðxðt�τÞÞþC
Z t

t�h
gðxðsÞÞ dsþU; ð2Þ

where x¼ ðx1; x2;…; xnÞT ARn denotes the state of the neurons; D
¼ diagðd1; d2;…; dnÞT ARn is a positive diagonal matrix; A¼ ðaijÞn�n,
B¼ ðbijÞn�n, C ¼ ðcijÞn�n, are the n� n real connection weight
matrices representing the weighting coefficients of the neurons; g
¼ ðg1ðx1Þ; g2ðx2Þ;…; gnðxnÞÞT ARn represents the neuron activations.

In this paper, we will study the neural network (1) with general
activation functions. That is, the activation functions are only
assumed to be non-increasing. For convenience, we define

M9fϕ : R-Rj sϕðsÞZ0; and DþϕðsÞZ0; sARg: ð3Þ

For any ϕAM, we define

K½ϕðtÞ� ¼ ½ϕðt� Þ;ϕðtþ Þ� ð4Þ

In this paper, we always assume the following assumptions hold,
(A1) The activation function of neural network (1) satisfies the

Lurie-type condition. That is, giAM, and there exists ki40 such

that

xigiðxiÞrkix2i

for any xiAR.
Here, the constants ki; i¼ 1;2;…;n, are generally called to be

Lurie constants.
ðA2Þ The parameters A¼ ðaijÞn�n, B¼ ðbijÞn�n, C ¼ ðcijÞn�n, D¼

diagðdiÞ are assumed to be intervalised as follows:

DI ≔ fD¼ diagðdiÞ : 0rDrDrD; i:e ., di rdirdi ; 8 ig

AI ≔ fA¼ ðaijÞ : ArArA; i:e:; aij raijraij ; 8 i; jg

BI ≔ fB¼ ðbijÞ : BrBrB; i:e:; bij rbijrbij ; 8 i; jg ð5Þ

Next lemma is Leray–Schauder alternative theorem, which
plays an important role in proving the existence of the equilibrium
point of the neural network (2).

Lemma 2.1 (Granas and Dugundji [39]). If X is a Banach space, C
DX is nonempty convex with 0AC and G : C-PkðcÞðCÞ is an USC
multifunction which maps bounded sets into relatively compact sets,
then one of the following statements is true:

(1) the set Γ ¼ xAC : xAλGðxÞ; λAð0;1Þ is unbounded;
(2) the Gð�Þ has a fixed point in C, i.e., there exists xAC such that

xAGðxÞ.

Definition 2.1. xn is said to be an equilibrium point of neural
network (2) if there exists γnAK½gðxnÞ� such that

�DxnþðAþBÞγnþCHγnþU ¼ 0; ð6Þ

where H¼ diagðhiÞ, i¼ 1;2;…;n. And γn is said to be an output
equilibrium point of system (2) corresponding to xn.

Definition 2.2 (Forti et al. [35]). For any continuous function ϕ :

½�τ;0�-Rn and any measurable selection ψ : ½�τ;0�-Rn, such that
ψ ðsÞAK½gðϕðsÞÞ� for a.a. sA ½�τ;0�, by an initial value problem (IVP)
associated to (2) with initial condition ðϕ;ψ Þ, we mean the following
problem: find a couple of functions ½x; γ� : ½�τ; TÞ-Rn � Rn, such
that x is a solution of (2) on ½�τ; TÞ for some T40, γ is an output
associated to x, and

_xðtÞ ¼ �DxðtÞþAγðtÞþBγðt�τÞþC
R t
t�h γðsÞ dsþU; for a:a: tA ½0; TÞ

xðrÞ ¼ϕðrÞ; 8rA ½�τ;0�
γðrÞ ¼ψ ðrÞ; for a:a: rA ½�τ;0�

8><
>:

ð7Þ
Lemma 2.2 (Faydasicok and Arik [40]). Let x¼ ðx1; x2;…; xnÞT ARn, if

AAAI ≔ fA¼ ðaijÞ : 0rArArA; i:e ., 0raij raijraij ; 8 i; jg

then, for any positive diagonal matrix P, the following inequality holds:

xT ðPAþATPÞxrxT ðPAnþAnTPþ JPAnþAT
n
P J2IÞx;

where An ¼ 1
2ðAþAÞ;An ¼ 1

2ðA�AÞ:

Lemma 2.3 (Qin et al. [28]). Let x¼ ðx1; x2;…; xnÞT ARn, if

BABI ≔ fB¼ ðbijÞ : 0rBrBrB; i:e ., 0rbij rbijrbij ; 8 i; jg;

then, the following inequality holds:

JBJ2rb;

where
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