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a b s t r a c t

The fact that the linear estimators using the rank-based Wilcoxon approach in linear regression problems
are usually insensitive to outliers is known in statistics. Outliers are the data points that differ greatly
from the pattern set by the bulk of the data. Inspired by this fact, Hsieh et al. introduced the Wilcoxon
approach into the area of machine learning. They investigated four new learning machines, such as
Wilcoxon neural network (WNN), and developed four gradient descent based backpropagation algo-
rithms to train these learning machines. The performances of these machines are better than ordinary
nonrobust neural networks in outliers exist tasks. However, it is hard to balance the learning speed and
the stability of these algorithms which is inherently the drawback of gradient descent based algorithms.
In this paper, a new algorithm is used to train the output weights of single-layer feedforward neural
networks (SLFN) with input weights and biases being randomly chosen. This algorithm is called
Wilcoxon-norm based robust extreme learning machine or WRELM for short.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is reported that the modern age of neural network began with
the work of McCulloch and Pitts in 1943 [1]. Since then, some
popular and powerful artificial neural networks (ANN) have been
proposed, such as self organizing maps (SOM) [2], radial basis
function neural networks (RBF) [3], and support vector machines
(SVM) [4]. Several learning algorithms have been proposed in the
literature for training the aforementioned learning machines [2–6].
Among these machines, one simple structure is multilayer percep-
tron artificial neural networks (MLP). Some off-line algorithms have
been introduced to learn the weights and biases of MLP. One well-
known gradient descent based batch learning algorithm is back-
propagation (BP) [5]. In order to improve the convergence speed of
BP algorithm, several improvements were made in [6,7]. One pro-
blem associated with MLP is how to decide the stop criterion of
training process, and another problem is how to decide the number
of hidden layers and the number of neurons in each layer. It has
been proved that a single-hidden layer feedforward neural network
with additive hidden nodes and with a nonpolynomial activation
function can approximate any continuous function in a compact set
[8]. Huang et al. rigorously proved that SLFNs with randomly

assigned input weights and hidden neurons' biases and with almost
any nonzero activation functions can universally approximate any
continuous function on any compact input sets [9,10]. Based on this
concept, the extreme learning machine (ELM) algorithm was pro-
posed for batch learning [9,11], which has attracted tremendous
attention from various fields for recent years [12–17]. ELM was also
extended to semi-supervised/unsupervised tasks [18] and online
sequential learning applications (OS-ELM)[19]. Most of these algo-
rithms are based on the principle of least square error minimiza-
tion, so the performances of these algorithms are easily affected by
outliers. In other words, these algorithms are not robust. Inspired by
different mechanisms, two robust algorithms were proposed,
namely least trimmed squares (LTS) [20–23] and rank-based Wil-
coxon neural networks (WNN) [24–26]. LTS and WNN have good
generalization capability in outliers existing tasks, but some vital
parameters, like learning rate, have to be decided by try and error.
In this paper, a new learning machine based on Wilcoxon norm is
proposed, then the generalization capability and training speed of
both robust and nonrobust algorithms will be compared.

This paper is organized as follows. Section 2 reviews the Wil-
coxon neural network proposed by Hsieh [20] and discusses some
related problems. Section 3 illustrates the basic background of ELM
and discusses the proposed WRELM in detail. The experimental
results are conducted in Section 4. Finally, some conclusions are
included in Section 5.
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2. Wilcoxon SLFN

2.1. Wilcoxon norm

The Wilcoxon norm of a vector will be used as the objective
function for Wilcoxon learning machines. In order to define the
Wilcoxon norm of a vector, a score function is introduced. The
score function is a nondecreasing function ϕ : ½0;1�-R1 which
satisfies

R 1
0 ϕðuÞ du¼ 0 and

R 1
0 ϕ

2ðuÞ du¼ 1.
The score aϕð�Þ associated with the score function ϕ is defined

by

aϕðiÞ ¼ϕ
i

Nþ1

� �
; i¼ 1;2;…;N ð1Þ

where N is a fixed positive integer. Hence aϕð1Þraϕð2Þr…r
aϕðNÞ. It can be shown that the following function is a pseudonorm
(seminorm) on RN:

JeJW ¼
XN
i ¼ 1

aðRðeiÞÞei ¼
XN
i ¼ 1

aðiÞeðiÞ ð2Þ

where e¼ ½e1;…; eN �T ARN , RðeiÞ denotes the rank of ei among
e1;…; eN , eð1Þr…reðNÞ are the ordered values of e1;…; eN ,
aðiÞ ¼ϕ½i=ðNþ1Þ�, and ϕðuÞ ¼

ffiffiffiffiffiffi
12

p
ðu�0:5Þ. We call ej jW defined in

Eq. (2) the Wilcoxon norm of the vector e.
It is easy to show that the proposed Wilcoxon norm above

satisfies the following properties for a pseudonorm:

(a) JeJW Z0 for all eARN , if and only if e1 ¼⋯¼ eN , ej jW ¼ 0.
(b) JαeJW ¼ jαj JeJW for all αAR1 and eARN .
(c) e1þe2j jW r e1j jW þ e2j jW for all e1; e2ARN .

2.2. Wilcoxon neural network

In this part, just the core concept of WNN will be illustrated,
more details on WNN can refer to [24]. Consider the single-hidden
layer Wilcoxon neural network with nþ1 nodes in its input layer,
m nodes in its hidden layer, and p nodes in its output layer.

Let the input vector be x¼ ½x1; x2;…; xn;1�T ARnþ1, and let vij
denote the connection from the ith input node to the jth hidden
node. The input uj and output rj of the jth hidden node are
respectively given by

uj ¼
Xnþ1

i ¼ 1

vjixi; rj ¼ f ðujÞ; for j¼ 1;2;…;m ð3Þ

where f is the activation function of hidden nodes.
Let wkj denote the connection weight from the output of the jth

hidden node to the kth output node. Then, the output of kth
output node tk and final output yk are respectively given by

tk ¼
Xm
j ¼ 1

wkjrj; yk ¼ tkþbk; for k¼ 1;2;…; p ð4Þ

where bk is the bias of the kth output node.
Assume that the training data set is f xi; dið ÞgN1 with xiARnþ1

and diARp, where N is the number of training data, xi ¼
½x1i;…; xni;1�T is the ith input vector, and di is the desired output
for the input xi. In the WNN, the approach is to choose network
weights (v and w) that minimize the Wilcoxon norm of the total
residuals of training data

Dðv;wÞ ¼
Xp
k ¼ 1

XN
i ¼ 1

aðRðei;kÞÞei;k ¼
Xp
k ¼ 1

XN
i ¼ 1

aðiÞeðiÞ;k ð5Þ

where ei;k ¼ di;k�ti;k, Rðei;kÞ denotes the rank of the residual ei;k
among e1;k;…; eN;k and eð1Þ;kr…reðNÞ;k are the ordered values of
e1;k;…; eN;k.

The neural network used above is the same as the one used in
the traditional artificial neural network, except the bias terms at
the output node. The main reason is that the Wilcoxon norm is a
pseudonorm rather than the usual norm. JeJW ¼ 0 implies that
e1 ¼⋯¼ eN , not implies that e1 ¼⋯¼ eN ¼ 0. Therefore, without
the bias terms, the resulting predictive function with small Wil-
coxon norm of total residuals may deviate from the desired
function by constant offsets. The bias term bk is estimated by the
median of the residuals at the kth output node, i.e.,
bk ¼med1r irNfdki�tkig.

The proposed gradient descent based algorithm in [24] can
train WNN effectively, however, there is one practical issue
involved in real application. The speed of convergence depends
highly on the magnitude of the learning rate parameter which is
highly task dependant. To guarantee the network convergence,
and avoid oscillations during training, the learning rate parameter
must be set to a relatively small value, which clearly affects the
speed of the algorithm [1]. In this paper, we use an algorithm in
linear regression to train WNN, and it will be discussed in the
following section.

3. Wilcoxon-norm-based robust extreme learning machine

In this section, a brief description of the ELM algorithm
developed by Huang et al. in [9] is given first. Then the WRELM
algorithm is introduced.

3.1. ELM algorithm

In supervised batch learning applications, learning algorithms
use a finite number of input-output samples for learning networks'
parameters. For N arbitrary distinct samples ðxi; yiÞARn � Rp,
standard SLFNs with m hidden neurons and activation function (or
radial basis function) g(x) are modeled as

Xm
j ¼ 1

wjGðaj; bj; xiÞ ¼ yi; for i¼ 1;…;N ð6Þ

where aj and bj are the learning parameters of hidden neurons and
wj is the weight connecting the jth hidden node to output neu-
rons. For additive hidden neuron with the activation function g(x)
(e.g., sigmoid or threshold), Gðaj; bj; xÞ is given in [19]

Gðaj; bj; xÞ ¼ gðaj � xþbjÞ; bjAR: ð7Þ
For RBF hidden neuron with Gaussian activation function g(x),

Gðai; bi; xÞ is given by Gðaj; bj; xÞ ¼ g Jx�aj J
2b2j

� �
; bjAR:

Eq. (6) can be written compactly as

H �W ¼ Y ð8Þ
where

H¼
Gða1; b1; x1Þ ⋯ Gðam; bm; x1Þ

⋮ ⋯ ⋮
Gða1; b1; xNÞ ⋯ Gðam; bm; xNÞ

2
64

3
75;W ¼

wT
1

⋮
wT

m

2
64

3
75
m�p

and Y ¼
yT1
⋮
yTN

2
64

3
75
N�p

:

H is called the hidden layer output matrix of the network [9].
The ith column of H is the ith hidden node's output vector with
respect to inputs x1; x2;…;xN .

By minimizing the objective function JH �W�Y J22, the esti-
mation of output weights of hidden layer can be calculated by

W ¼ arg min
wk

JH �W�Y J22 ¼HþY ð9Þ
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