
An effective LS-SVM-based approach for surface roughness prediction
in machined surfaces

Nian Zhang a,n, Devdas Shetty b

a Department of Electrical and Computer Engineering, University of the District of Columbia, 4200 Connecticut Avenue, NW, Washington, DC 20008, USA
b School of Engineering and Applied Sciences, University of the District of Columbia, 4200 Connecticut Avenue, NW, Washington, DC 20008, USA

a r t i c l e i n f o

Article history:
Received 2 April 2015
Received in revised form
16 July 2015
Accepted 31 August 2015
Available online 17 March 2016

Keywords:
Surface roughness prediction
Least squares support vector machine (LS-
SVM)
Neural networks
Levenberg–Marquardt algorithm
ANOVA
Machined surfaces

a b s t r a c t

An effective least squares support vector machine (LS-SVM)-based approach was developed to predict
the surface roughness in machined surface. The real AISI4340 steel and AISID2 steel data set was used to
conduct the experiments. The analysis of variance (ANOVA) was used to validate the assumption of
normal distribution, as well as the independent distribution of the errors. For the neural networks model,
with 70%, 15%, and 15% of data as training, validation, and testing data, respectively, the best validation
error is 0.0097343. The training error is 9.08888e–4 and the testing error is 1.09510e–1 accordingly. NN
methods also discovered the correlation between the predicted surface roughness (Ra) and the actual
surface roughness in the form of predicted Raffi0.41*Actual Raþ0.2. The LS-SVM performance was also
compared to the analysis of variance (ANOVA) method, and neural networks model trained by Leven-
berg–Marquardt algorithm. The experimental results showed that the proposed LS-SVM algorithm
produced a determination coefficient of ¼0.9439, which is higher than the ANOVA and NN results of
0.1917 and 0.7266.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Surface roughness is a critical quality index which determines
the quality of machined surfaces and is influenced by the cutting
parameters [1]. Surface roughness prediction has very important
applications in manufacturing industries, environmental sciences,
and military applications [2].

Many techniques have been developed to predict surface
roughness. Sonar et al. [3] used radial basis neural networks for
prediction of surface roughness in turning of mild steel and con-
cluded that radial basis neural networks model are slightly inferior
when compared to multilayer perceptron model. Naidu et al. [4]
presented that the neural networks models are superior to
regression models. Caydas and Ekici [5] developed three different
types of support vector machines (SVMs) tools including least
squares SVM (LS-SVM), Spider SVM and SVM-KM models to esti-
mate the surface roughness values. The prediction results showed
that all the SVMs performed better than neural networks. How-
ever, the training data are relatively intact. Wang et al. [6] applied
LS-SVM algorithms for prediction model of surface roughness for
grinding machining operation. Result shows that LS-SVM

outperformed the RBF neural networks method. However, the LS-
SVM needs to be compared with more efficient neural networks.

Given this context, it is imperative to develop an effective LS-
SVM and compare its performance with the neural networks and
analysis of variance methods for surface roughness prediction.

This paper is organized as follows. In Section 2, problem
statement is described. In Section 3, the principle of least squares
support vector machines (LS-SVM) and Neural Networks with
Levenberg–Marquardt optimization are illustrated in detail. In
Section 4, experimental results and discussions are demonstrated.
In Section 5, the comparison of ANOVA, NN, and LS-SVM on the
surface roughness prediction was presented. In Section 6, the
conclusions are given.

2. Problem statement

Given the sample of N points xi; yi
� �N

i ¼ 1, with input vectors xi
Aℝp and output values yiAℝ, the goal is to estimate a model of
the following form:

yi ¼wT∅ xið Þþbþεi ði¼ 1;2;…; lÞ ð1Þ
where ∅ Uð Þ:ℝp-ℝnh is the mapping to a high dimensional (and
possibly infinite dimensional) feature space, and the residuals are
assumed to be independent and identically distributed with zero
mean and constant and finite variance.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.08.124
0925-2312/& 2016 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: nzhang@udc.edu (N. Zhang),

devdas.shetty@udc.edu (D. Shetty).

Neurocomputing 198 (2016) 35–39

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.08.124
http://dx.doi.org/10.1016/j.neucom.2015.08.124
http://dx.doi.org/10.1016/j.neucom.2015.08.124
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.08.124&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.08.124&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.08.124&domain=pdf
mailto:nzhang@udc.edu
mailto:devdas.shetty@udc.edu
http://dx.doi.org/10.1016/j.neucom.2015.08.124


3. Proposed methods

3.1. Principle of least squares support vector machine regression

Least squares support vector machine (LS-SVM) formulates a
regularized cost function and changes its inequation restriction to
equation restriction. As a result, the solution process becomes a
solution of a group of equations which greatly accelerates the
solution speed [7]. To solve the problem stated in (1), the following
optimization problem with a regularized cost function is for-
mulated:

minw;b;εi
1
2
wTwþC

2

Xl

i ¼ 1
ε2i

� �
ð2Þ

The solution of LS-SVM regressor will be obtained after we
construct the Lagrangian function. The extreme point of Q is a
saddle point. Differentiating Q and using Lagrange multipliers, one
obtains the following optimality conditions:

∂Q
∂w

¼w�
Xl

i ¼ 1
αi∅ xið Þ ¼ 0 ð3Þ

∂Q
∂b

¼ �
Xl

i ¼ 1
αi ¼ 0 ð4Þ

∂Q
∂α ¼wT �∅ xið Þþbþεi�yi ¼ 0 ð5Þ

∂Q
∂εi

¼ Cεi�αi ¼ 0 ð6Þ

where αAℝ are the Lagrange multipliers. From formulas above,
we can obtain:

1
2

Xl

i ¼ 1
αi∅ðxiÞ

Xl

j ¼ 1
αj∅ xj

� �þ 1
2C

Xl

i ¼ 1
α2
i þb

Xl

i ¼ 1
αi ¼

Xl

i ¼ 1
αiyi

ð7Þ
The formula above can be expressed in matrix form:

0 eT

e ΩþC�1I

" #
lþ1ð Þ lþ1ð Þ b

α

� 	
¼ 0

Y

� 	
ð8Þ

In this equation

e¼ ½1;…;1�Tx

Ωij ¼ Kðxi; xjÞ ¼∅ðxiÞT∅ðxjÞ ð9Þ
Formula (7) is a linear equation set corresponding to the opti-

mization problem and can provide us with α and b. Thus, the
prediction output decision function is

y xð Þ ¼
Xl

i ¼ 1
αiK xixð Þþb ð10Þ

where K(xi,x) is the core function.

3.2. Fundamentals of neural networks with Levenberg–Marquardt
optimization

The proposed neural network model is a two-layer feedforward
network, with a sigmoid transfer function in the hidden layer and
a linear transfer function in the output layer, as shown in Fig. 1. W
is the weight matrix, and b is the bias.

In this section, the above neural network is trained using
Levenberg–Marquardt backpropagation algorithm. It is a network
training function that updates weight and bias values according to
Levenberg–Marquardt optimization. It is often the fastest back-
propagation algorithm for training moderate-sized feedforward
neural networks (up to several hundred weights), although it does
require more memory than other algorithms, such as conjugate
gradient backpropagation.

Like the quasi-Newton methods, the Levenberg–Marquardt
algorithm was designed to approach second-order training speed
without having to compute the Hessian matrix. When the per-
formance function has the form of a sum of squares (as is typical in
training feedforward networks), then the Hessian matrix can be
approximated as

H¼ JT J ð11Þ

and the gradient can be computed as

g¼ JT e ð12Þ

where J is the Jacobian matrix that contains first derivatives of the
network errors with respect to the weights and biases, and e is a
vector of network errors. The Jacobian matrix can be computed
through a standard backpropagation technique that is much less
complex than computing the Hessian matrix.

The Levenberg–Marquardt algorithm uses this approximation
to the Hessian matrix in the following Newton-like update [8]:

xkþ1 ¼ xk�½ JT JþμI��1JT e ð13Þ

When the scalar m is zero, this is just Newton's method, using
the approximate Hessian matrix. When m is large, this becomes
gradient descent with a small step size. Newton's method is faster
and more accurate near an error minimum, so the aim is to shift
toward Newton's method as quickly as possible. Thus, m is
decreased after each successful step (reduction in performance
function) and is increased only when a tentative step would
increase the performance function. In this way, the performance
function is always reduced at each iteration of the algorithm.

4. Experimental results and discussion

For experimental study, AISI4340 steel and AISID2 steel are
used as the workpiece materials with average surface hardness
values of 50, 55, and 60 HRC, respectively [9]. The cutting para-
meters include cutting speed (m/min), feed rates (mm/rev), and
depths of cut (mm). The data set has a total of 34 combinations of
the cutting parameters with the actual surface roughness.

First, we performed a normal probability plot on the residuals
to identify substantive departures from normality, as shown in
Fig. 2. The normal probability plot of the residuals appears as a
straight line, which indicates that the assumption of normal dis-
tribution is valid [10].

The plot of the residuals versus the fitted values is illustrated in
Fig. 3. Given that the dots are evenly distributed around the
abscissa without a clear trend, the errors are independently dis-
tributed and the variance is constant [11].

+

b

WInput

Output

Hidden Layer Output Layer

+

b

W

Fig. 1. Neural networks architecture for the predictive model. The network is a
two-layer feedforward network, with a sigmoid transfer function in the hidden
layer and a linear transfer function in the output layer. This network also uses
tapped delay lines to store previous values of y(t) sequences. W is the weight
matrix, and b is the bias.

N. Zhang, D. Shetty / Neurocomputing 198 (2016) 35–3936



Download English Version:

https://daneshyari.com/en/article/411396

Download Persian Version:

https://daneshyari.com/article/411396

Daneshyari.com

https://daneshyari.com/en/article/411396
https://daneshyari.com/article/411396
https://daneshyari.com

