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a b s t r a c t

This paper proposes an adaptive controller for the trajectory tracking of a nonholonomic wheeled mobile
robot with nonholonomic constraints in the presence of external disturbances and unknown parameters.
A new scheme is proposed to design an adaptive virtual velocity controller and torque control law.
Meanwhile, a disturbance observer is applied to estimate the lumped disturbance to achieve the feed-
forward compensation. Simulation results demonstrate the effectiveness of the proposed control scheme.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the past few decades, research on wheeled mobile robot
(WMR) has been widely investigated because of its extensive
application in many fields such as industry, agriculture, service
industry, national defense industry, etc. In early studies, only
kinematic controllers for WMR were designed [1–3] based on the
assumption that there are some kinds of dynamic controllers that
can produce perfectly the same velocity. However, it is hard to
design this kind of dynamic controllers. Therefore, some
researchers changed the object from kinematic model to kine-
matic and dynamic model [4,5]. It should be pointed out that these
proposed controllers are concerned with known parameters of the
WMR. However, it is almost impossible to obtain the exact values
of the parameters of the WMR in practice.

To address this problem, many methods such as adaptive and
robust control have been proposed for the WMR with unknown
parameters. In [6], an adaptive tracking controller has been pre-
sented for the WMR with unknown parameters using the back-
stepping approach. In [7], a robust adaptive controller has been
applied to overcome uncertainties as well as the external dis-
turbances. Then, the work [8] has introduced a novel adaptive
controller, which uses a fuzzy logic system to esitmate the
unknown robot parameters for the WMR, while the work [9] has
dealt with the problem based on sliding mode control. Then, some
researchers have focused on the implementation of the robot

trajectory tracking, for example, how to observe the unmeasured
velocities [10,11], deal with the input saturation [12], obtain the
desired trajectory [13,14], detect the fault [15,16], and so on. In
[10], a novel adaptive observer is developed to estimate the
unmeasured velocities using transformation matrices. It can also
deal with uncertain parameters and quadratic velocity terms for
the WMR. The work [11] has proposed a new adaptive control
scheme including a new adaptive state feedback controller and
two high-gain observers to estimate the unknown velocities.
Under the condition of external disturbances and input saturation
[12] has proposed a tracking and stabilization scheme for WMR.
The work [15] has presented a prediction error based fault
detection algorithm to detect the faults in the dynamic model.
Recently, the work [16] has proposed a nonlinear observer to
detect the fault for the WMR. The work [17] has investigated an
adaptive robust controller to deal with the trajectory tracking
problem with parametric and nonparametric uncertainties in the
WMR. The tracking problem for the WMR with kinematic and
dynamic uncertainties has been addressed in [18]. A new non-
linear disturbance observer for robotic manipulators is derived in
[19]. Based on disturbance observer based control techniques the
work [20] has proposed a general framework for nonlinear sys-
tems with disturbances.

Motivated by [20,21], we design a disturbance observer to
estimate the external disturbance and unknown parameters in the
dynamic model, which can be treated as a lumped disturbance.
Then, the disturbance observer will estimate the lumped dis-
turbance. Compared with the adaptive robust control or sliding
mode control, the proposed method will attenuate the disturbance
and the influence of parameter variations by feedforward com-
pensation. Which will reduce the burden of the controller in terms
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of large amplitude of disturbance. In the end, the analysis of the
system stability is verified using Lyapunov approach.

2. Robot model and problem formulation

A two-wheeled robot is considered in Fig. 1. X is the moving
direction of the WMR in {X,Pc,Y}, Pc is the mass center. Po is the
geometrical center. The distance between the two wheels is 2b. r is
the wheel's radius. d represents the distance between Po and Pc,
which is a unknown constant. The robot is in the fixed coordinate
{x,o,y} and the angle between axis X and axis x is θ.

The WMR's model is expressed as [4,8]

_q ¼ SðqÞη ð1Þ

MðqÞ €qþCðq; _qÞþFð _qÞþτd ¼ BðqÞτ�AT ðqÞλ ð2Þ
where q¼ ðx; y;θÞT denotes the position and orientation of the
robot, η¼ ðν;ωÞT is a vector of line and angular velocity, respec-
tively. τ¼ ðτ1; τ2ÞT denotes the control torques of the WMR. λ is a
constraint force. τd denotes the bounded unknown disturbances.
M(q) is a symmetric and positive-definite inertia matrix, Cðq; _qÞ is
the centripetal and coriolis matrix, Fð _qÞ denotes the surface fric-
tion, B(q) is the input transformation matrix. The mass of the WMR
is m, inertia moment is J. Matrices S(q), MðqÞ;Cðq; _qÞ, B(q), and A(q)
are given as follows

SðqÞ ¼
cos θ �d sin θ
sin θ d cos θ
0 1

2
64

3
75;

MðqÞ ¼
m 0 md sin θ
0 m �md cos θ

md sin θ �md cos θ J

2
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3
75;
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2 cos θmd _θ

2
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Remark 2.1. The friction term Fð _qÞ satisfies JFð _qÞJra1 J _q Jþa2
where a1 and a2 are positive constants.

The nonholonomic constraint implies that the mobile base
satisfies the conditions of non slipping and pure rolling. Thus, the

nonholonomic constraint is

AðqÞ _q ¼ 0: ð3Þ
From (1), one can obtain that

€q ¼ SðqÞ _ηþ _SðqÞη: ð4Þ
Substituting (4) into (2), it yields

MðqÞSðqÞ _ηþMðqÞ _SðqÞηþCðq; _qÞþFð _qÞþτd ¼ BðqÞτ�AT ðqÞλ: ð5Þ
Multiplied by ST ðqÞ on the left side of (5), one has

ST ðqÞMðqÞSðqÞ _ηþST ðqÞMðqÞ _SðqÞηþST ðqÞCðq; _qÞ
þST ðqÞðFð _qÞþτdÞ ¼ ST ðqÞBðqÞτ�ST ðqÞAT ðqÞλ: ð6Þ

From the definitions of matrices SðqÞ;AðqÞ;MðqÞ;Cðq; _qÞ, it can be
seen that

ST ðqÞAT ðqÞ ¼ 0; ST ðqÞMðqÞ _SðqÞηþST ðqÞCðq; _qÞ ¼ 0; ð7Þ
under which, (6) becomes

M _ηþδ¼ Bτ ð8Þ

where M ¼ m
0

0
J�md2

h i
, δ¼ ST ðqÞðFð _qÞþτdÞ and B ¼ 1

r
1
b

1
�b

� �
.

Let ðxr ; yr ;θrÞT represent the desired reference of the WMR,
which is described by:

_xr ¼ νr cos θr�dωr sin θr

_yr ¼ νr sin θrþdωr cosθr

_θr ¼ωr

8><
>: ð9Þ

where vr andωr denote the desired linear and angular velocities of
the robot.

The purpose is to design torque controller τ for the WMR to
make the real trajectory track the desired one. To achieve this
objective, some assumptions are listed.

Assumption 2.1. The disturbance δ and its derivative are both
bounded. In addition, δ has a constant value in steady state, i.e.,
limt-þ1 J _δ J ¼ 0.

Assumption 2.2. The reference linear and angular velocities νr, ωr

and their first-order derivatives _νr , _ωr are bounded.

Assumption 2.3. The unknown parameters of the WMR are in
known compact sets.

Remark 2.2. Since the WMR is a large inertia system, it is insen-
sitive to the fast time-varying disturbance. Thus, it is reasonable to
suppose that limt-þ1 J _δ J ¼ 0. In actual case, the velocity and
acceleration of the wheeled mobile robot are always limited by the
motors. Moreover, the parameters m, J and d of the mobile robot
cannot be obtained accurately. But the range of the parameters can
be estimated. Therefore, it is reasonable to assume that the
unknown parameters of the mobile robot are in known
compact sets.

3. An adaptive controller and disturbance observer design

In this part, a novel scheme including parameter estimators
and control laws is proposed. Based on the kinematic model (1), a
virtual control ðνc;ωcÞ will be designed to provide the virtual lin-
ear and angular velocity. Then, the torque controller τ is designed
to generate real linear and angular velocities to track the virtual
one. The disturbance observer is applied to estimate the lumped
disturbance to achieve the feedforward compensation. The block
diagram of the closed-loop system is shown in Fig. 2.Fig. 1. A two-wheeled nonholonomic mobile robot.
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