
Neural network-based online H1 control for discrete-time affine
nonlinear system using adaptive dynamic programming

Chunbin Qin a,b, Huaguang Zhang c,d,n, Yingchun Wang c, Yanhong Luo c

a The College of Computer and Information Engineering, Henan University, Kaifeng, Henan 475004, China
b The College of Environment and Planning, Henan University, Kaifeng, Henan 475004, China
c The College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110004, China
d The State Key Laboratory of Synthetical Automation for Process Industries (Northeastern University), Shenyang 110819, China

a r t i c l e i n f o

Article history:
Received 31 March 2015
Received in revised form
10 August 2015
Accepted 31 August 2015
Available online 8 March 2016

Keywords:
H1 control
Adaptive dynamic programming
Neural networks
Nonlinear discrete-time system
Two-person zero-sum game

a b s t r a c t

In this paper, the problem of H1 control design for affine nonlinear discrete-time systems is addressed by
using adaptive dynamic programming (ADP). First, the nonlinear H1 control problem is transformed into
solving the two-player zero-sum differential game problem of the nonlinear system. Then, the critic,
action and disturbance networks are designed by using neural networks to solve online the Hamilton–
Jacobi–Isaacs (HJI) equation associating with the two-player zero-sum differential game. When novel
weight update laws for the critic, action and disturbance networks are tuned online by using data
generated in real-time along the system trajectories, it is shown that the system states, all neural net-
works weight estimation errors are uniformly ultimately bounded by using Lyapunov techniques. Fur-
ther, it is shown that the output of the action network approaches the optimal control input with small
bounded error and the output of the disturbance network approaches the worst disturbance with small
bounded error. At last, simulation results are presented to demonstrate the effectiveness of the new ADP-
based method.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the control performance for practical sys-
tems is often affected by the presence of unknown disturbances
such as measurement noise, input disturbances and other exogen-
ous signals, which invariably occur in most applications because of
plant interactions with the environment. H1 control is one of the
most powerful control methods for attenuating the effect of dis-
turbances in dynamical systems [1]. The formulation of the H1
Control for dynamical systems was studied in the frame work of
Hamilton–Jacobi equations by van der Schaft [2] and Isidori and
Astolfi [3]. It is worth noting that conditions for the existence of
smooth solutions of the Hamilton–Jacobi equation were studied
through invariant manifolds of Hamiltonian vector fields and the
relation with the Hamiltonian matrices of the corresponding Riccati
equation for the linearized problem [2]. Some of these conditions
were relaxed into critical and noncritical cases by Isidori and Astolfi
[3]. Later, Basar and Bernhard in [4] stated that the H1 control
problem could be posed as the zero-sum two-person differential

game, in which the input controller is a minimizing player and the
unknown disturbance is a maximizing player. Although the for-
mulation of the nonlinear H1 control theory has been well devel-
oped, the main bottleneck for its practical application is the need to
solve the Hamilton–Jacobi–Isaacs (HJI) equation, which is difficult
or impossible to solve and may not have global analytic solutions
[5]. Therefore, solving the HJI equation remains a challenge.

Over the past decades, some methods have been proposed to
solve the HJI equation [6–8]. The smooth solution of the HJI
equation has been determined directly by solving for the coeffi-
cients of the Taylor series expansion of the value function in a very
efficient manner, as it has been presented in [6]. Beard and McLain
[7] proposed an iterative-based policy to successively solve the HJI
equation by breaking the nonlinear differential equation to a
sequence of linear differential equations. On the basis of the work
[6] and [7], a similar iterative-based policy was proposed in [8] to
the HJI equation for nonlinear systems with input constraints.

In recent years, adaptive dynamic programming (ADP) [9–13] has
appeared to be promising methodologies for solving H1 control
problems [15–23]. Adaptive dynamic programming is a kind of
machine learning method for learning the feedback control laws
online in real time based on system performance without necessarily
knowing the system dynamics, which overcomes the curse of
dimensionality [14] of dynamic programming. Al-Tamimi et al. in [15]
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derived adaptive critic designs corresponding to heuristic dynamic
programming and dual heuristic dynamic programming to solve
online the H1 control problem of the linear discrete-time system in a
forward-in-time manner. Based on this work, authors in [16] pro-
posed an iterative adaptive critic design algorithm to find the optimal
controller of a class of discrete-time two-person zero-sum games for
Roesser types 2-D systems. Further, a novel data-based adaptive critic
design was proposed by using output feedback of unknown discrete-
time zero-sum games [17]. Besides, optimal strategies based Q-
learning were proposed for the H1 optimal control problem with-
out knowing the system dynamical matrices in [18] and [19]. For the
nonlinear case, Mehraeen et al. [20,21] developed an off-line iterative
approach to solve the HJI equation by using a successive approx-
imation approach. Liu et al. in [22] proposed value iteration methods
corresponding to heuristic dynamic programming and dual heuristic
dynamic programming to solve the HJI equation for constrained
input systems. Later, Liu et al. [23] proposed an iterative adaptive
dynamic programming algorithm to solve the zero-sum game pro-
blems for affine nonlinear discrete-time systems. Nevertheless, a
common feature of the above ADP-based results for solving the H1
control problem is that sequential iterative approaches are utilized to
solve the HJI equation, which contain more than one iteration loop,
i.e., the value function and the control and disturbance policies are
asynchronously updated. However, such a procedure may lead to
redundant iterations, and result in low efficiency [24], which moti-
vates us to carry out the work of this paper.

In this paper, a new ADP-based method is proposed to solve
online the H1 control problem of the nonlinear system, in which
three online parametric structures are designed by using three
neural networks for solving online the Hamilton–Jacobi–Isaacs
equation appearing in the H1 control problem of the nonlinear
system. The main contributions of this paper have two folds. First,
we present a new ADP-based method in which the weights of three
online parametric structures are tuned simultaneously along the
system trajectories to converge to the solution of the HJI equation,
which is different from the sequential algorithms in [15–23]. Second,
while explicitly considering the neural network approximation
errors in contrast to the works [20,22], Lyapunov theory is utilized to
demonstrate that the system states and the weight estimation errors
of three online parametric structures are uniformly ultimately
bounded. Besides, it is shown that the pair of the approximated
control signal and the disturbance input signal converges to the
approximate Nash equilibrium solution of the two-player zero-sum
differential game.

The remainder of this paper is organized as follows. In Section 2,
the problem statement is shown. In Section 3, we present a new
ADP-based method for solving HJI equation of nonlinear discrete-
time systems and the rigorous proof of convergence is given.
Section 4 presents an example to demonstrate the effectiveness of
the proposed method. Finally, conclusions are drawn in Section 5.

2. Problem formulation

In this paper, we consider the following affine nonlinear
discrete-time system in the presence of the disturbance d(k):

xkþ1 ¼ f ðxkÞþgðxkÞuðkÞþdðkÞ ð1Þ

zðkÞ ¼ ½Cxk DuðkÞ�T ð2Þ

where xkARn is the system state, uðkÞARm is the system control
input, dðkÞARn is the disturbance signal with dðkÞAL2½0;1�, z(k) is
the system fictitious output. Assume that JgðxkÞJFrgM [25],
where J � JF denotes the Frobenius norm.

The H1 control for the nonlinear discrete-time system (1) and
(2) is to find a state feedback control

uðkÞ ¼ uðxkÞ ð3Þ
such that the closed-loop system (1) and (2) with (3) is asymp-
totically stable, and has L2 gain less than or equal to γ, i.e.

X1
k ¼ 0

zT ðkÞzðkÞrγ2
X1
k ¼ 0

dT ðkÞdðkÞ ð4Þ

for all dðkÞAL2½0;1�, where γ40 is some prescribed level of dis-
turbance attenuation. Note that throughout this paper we shall
assume that γ is fixed and γZγn, where γn is the minimum γ for
which Eq. (4) can hold.

According to [4], it is well known that the H1 control problem
can be posed as a zero-sum two-player differential game, in which
the system control input u(k) is regarded as a minimizing player
and the disturbance d(k) is regarded as a maximizing one. Corre-
spondingly, we can define the following infinite horizon quadratic
cost function for the zero-sum two-player differential game,

Jðxð0Þ;u; dÞ ¼
X1
k ¼ 0

Uðxk;uk;dkÞ ð5Þ

where Uðxk;uk; dkÞ ¼ xTkQxkþuT
kRuk�γ2dTkdk, Q ¼ CTC, R¼DTD,

xk ¼ xðkÞ, uk ¼ uðkÞ, dk ¼ dðkÞ.
For the given system control input uk and the bounded dis-

turbance dk, we can define the corresponding value function as

Vðxk;uk; dkÞ ¼
X1
i ¼ k

Uðxi;ui; diÞ: ð6Þ

Correspondingly, the Hamilton function can be defined as

Hðxk;uk; dkÞ ¼ Vðxkþ1Þ�VðxkÞþUðxk;uk; dkÞ; ð7Þ
where xkþ1 ¼ f ðxkÞþgðxkÞukþdk.

Therefore, for the zero-sum two-player differential game of the
nonlinear discrete-time system (1) and (2), our aim is to find a
state feedback saddle point (un, dn) such that

Vðun; dnÞ ¼min
u

max
d

Vðu; dÞ; ð8Þ

that means

Vðun; dÞrV ðun; dnÞrVðu; dnÞ; ð9Þ
where un ¼ μðxkÞ and dn ¼ ηðxkÞ, μð�Þ and ηð�Þ are smooth functions.

According to Bellman's optimality principle, we can obtain that
the optimal value function VnðxkÞ satisfies the following discrete-
time HJI equation:

VnðxkÞ ¼min
u

max
d

fUðxk;uk;dkÞþVnðxkþ1Þg: ð10Þ

At the same time, we can obtain the saddle point ðun; dnÞ of the
zero-sum two-player differential game as follows:

unðxkÞ ¼ �1
2
R�1gðxkÞT

∂Vnðxkþ1Þ
∂xkþ1

; ð11Þ

and

dnðxkÞ ¼
1
2γ2

∂Vnðxkþ1Þ
∂xkþ1

: ð12Þ
Inserting (11) and (12) into (10), the discrete-time HJI equation

can be rewritten as

0¼ Vnðxkþ1Þ�VnðxkÞþ
1
4
∂VnT ðxkþ1Þ

∂xkþ1
gðxkÞR�1gT ðxkÞ

∂Vnðxkþ1Þ
∂xkþ1

� 1
4γ2

∂VnT ðxkþ1Þ
∂xkþ1

� ∂Vnðxkþ1Þ
∂xkþ1

þxTkQxk; ð13Þ

where xkþ1 ¼ f ðxkÞþgðxkÞunðxkÞþdnðxkÞ;Vnð0Þ ¼ 0.
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