
An eigen decomposition based rank parameter selection approach
for the NRSFM algorithm

Yang Liu a, Zhan-Li Sun a,n, Ya-Ping Wang a, Li Shang b

a School of Electrical Engineering and Automation, Anhui University, Hefei, China
b Department of Communication Technology, Electronic Information Engineering College, Suzhou Vocational University, Suzhou, China

a r t i c l e i n f o

Article history:
Received 5 March 2015
Received in revised form
30 May 2015
Accepted 20 June 2015
Available online 11 March 2016

Keywords:
Non-rigid structure from motion
Rank parameter selection
Eigen decomposition

a b s t r a c t

Non-rigid structure from motion (NRSFM) with an affine structure from motion (aSFM) kernel (NRSFM-
aSFM) is a relative novel and robust 3D shape recovery algorithm to the abrupt deformations. Never-
theless, the estimated 3D shapes generally fluctuate with the variation of rank parameter, i.e., the
number of shape bases. Therefore, it is necessary to develop an effective method to select the rank
parameter. In this paper, we propose an eigen decomposition based rank parameter selection approach,
which can automatically select the optimal or an approximately optimal rank parameter for the NRSFM-
aSFM algorithm. In the proposed method, a symmetric matrix is first constructed to simplify the singular
value estimation. Further, the QR decomposition based iterations are carried out to compute the
eigenvalues of the observation matrix. Finally, the rank parameter is estimated according to the cumu-
lative sum of eigenvalues by setting a referred threshold value. The experimental results on several
widely used sequences demonstrate the effectiveness and feasibility of the proposed method.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The technique of non-rigid structure from motion (NRSFM)
provides an approach to jointly estimate 3D object shapes and the
relative camera motions from the corresponding 2D points in a
sequence of images [1,2]. Generally, the estimated 3D information
can effectively enhance the capabilities of existing image proces-
sing systems [3–7]. Nevertheless, during the process of movement,
the objects generally undergo a series of shape deformations and
pose variations [1]. Due to the under-constrained nature and the
absence of the prior knowledge on 3D shape, how to achieve good
solutions of NRSFM is still a very difficult and a more challenging
task in computer vision [8–10].

In order to make NRSFM more tractable, i.e., compress the
deformation model and reduce the number of unknowns to esti-
mate, 3D shape deformation is usually constrained to be smooth
over time [11–14]. Nevertheless, the temporal smoothness cannot
be enforced when the data lacks temporal ordering. Moreover, the
benefits brought by the temporal smoothness constraint are less
evident when objects undergo the abrupt deformations.

To address this problem, instead of the temporal constraint, a
relative novel and robust NRSFM algorithm with an affine struc-
ture from motion (aSFM) kernel (NRSFM-aSFM) is proposed in [2]
by enforcing spatial smoothness. A prominent advantage of the
approach is that it can effectively deal with the data lacking
temporal ordering or with abrupt deformations. For the NRSFM-
aSFM algorithm, one problem is that the reconstruction accuracies
generally fluctuate with the variation of rank parameter K, i.e., the
number of shape bases. Generally, the parameter is experimentally
determined, i.e., different K values are tried one by one. Never-
theless, the parameter derived from one image sequence may be
not a good choice for other image sequences. Therefore, it is
necessary to design an effective method to automatically select the
optimal or an approximately optimal value for the rank parameter.

In this paper, an eigen decomposition based rank parameter
selection approach is proposed for the NRSFM-aSFM algorithm. In
the proposed method, the rank parameter is estimated according
to the cumulative sum of eigenvalues, which are obtained via the
QR decomposition. By means of the proposed method, the optimal
or an approximately optimal K can be automatically derived from
the 2D tracking data. The experimental results on several widely
used sequences verify the effectiveness and feasibility of the
proposed approach.
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The remainder of the paper is organized as follows. The pro-
posed method is presented in Section 2. Experimental results are
given in Section 3. Finally, conclusions are made in Section 4.

2. Methodology

Assume that ½xt;j; yt;j�T ðt ¼ 1;2;…; T ; j¼ 1;2;…;nÞ is the 2D
projection of the jth 3D point observed on the tth image, i.e., x and
y coordinates of feature points. The n input 2D point tracks of T
images can be represented as a 2T � n observation matrix W, i.e.,

W¼

x1;1 x1;2 ⋯ x1;n
y1;1 y1;2 ⋯ y1;n
⋮ ⋮ ⋱ ⋮

xT ;1 xT ;2 ⋯ xT ;n
yT ;1 yT ;2 ⋯ yT ;n

0
BBBBBB@

1
CCCCCCA
: ð1Þ

According to the linear subspace model, W can be factorized
as [1]:

W¼MS¼DðC � I3ÞS; ð2Þ
where M is a motion factor that is composed of affine trans-
formation matrices of each frame, S denotes a shape matrix
including K shape bases. The matrices D, C and I3 represent a
block-diagonal rotation matrix, a shape coefficient matrix and
a 3�3 identity matrix, respectively. The expression C � I3
denotes the Kronecker product of C and I3.

Let cTt the tth row of C, the 3D shape of tth image can be
modeled as a linear combination of K shape bases SkAR3�n [1], i.e.,

S cTt
� �¼ cTt � I3

� �
S¼

XK
k ¼ 1

ct;kSk; ð3Þ

For this linear model, we can understand that S represents a linear
shape space, and cTt is the corresponding coordinates of 3D shape
bases Sk.

It can be seen from (3) that, in order to recover the 3D shape of
tth image, we should first determine the rank parameter K, i.e., the
number of shape bases. In our proposed method, K is estimated
according to the cumulative sum of singular values λiði¼ 1;…;KÞ
of W. Let A¼WW0, the singular values λi can be estimated as the
eigenvalues of WW0 via the following optimization model:

JA�λ2i IJ ¼ 0: ð4Þ
In order to obtain the solutions λi of (4), A is first transformed into
an upper Heisenberg matrix A1 via the Householder transforma-
tion. Furthermore, A1 is factorized as a product of two matrices Q 1
and R1 via the QR decomposition [15],

A1 ¼Q 1R1:

Subsequently, the following iterations are carried out,

A2 ¼ R1Q 1 ¼Q T
1A1Q 1; ð5Þ

⋮
Ak ¼ Rk�1Q k�1 ¼Q T

k�1Ak�1Q k�1; ð6Þ

Akþ1 ¼ RkQ k ¼Q T
kAkQ k; ð7Þ

till converges to an upper triangular matrix,

Ak-R¼

λ1 n ⋯ n

λ2 ⋯ n

⋱ ⋮
λn

0
BBBB@

1
CCCCA: ð8Þ

Specifically, if Ak is a symmetric matrix, Ak will converge to an
approximately diagonal matrix, i.e.,

Ak-

λ1
λ2

⋱
λn

0
BBBB@

1
CCCCA: ð9Þ

Given a threshold η, according to the percentage of the cumulative
sum of λiðλ14λ24⋯4λnÞ, K is estimated as the smallest number
that fulfills

K ¼min sANjλ
2
1þλ22þ⋯þλ2sPn

i ¼ 1 λ
2
i

Zη

( )
; ð10Þ

where the parameter η is set to be a value so that most nonzero
singular values are included.

After determining K, we then compute M and S of (2). For two
observations wt and wt0 , the affine structure from motion (aSFM)
rotation invariant kernel (RIK) is defined as [2]:

κðwt ;wt0 Þ ¼ exp
�r2t;t0
σ2

 !
þαδt;t0 ; ð11Þ

where σ, α and r2t;t0 are the kernel scale, the regulation parameter,
and the reprojection error, respectively. According to (11), we can
first obtain a complete kernel matrix Kww of W, and then com-
pute its eigenvector matrix V associated with the d largest
eigenvalues in the diagonal matrix Λ. The matrix M of (2) can be
computed as [2]:

M¼DðKWWVΛ�1=2X � I3Þ; ð12Þ
where D and the coefficient matrix X are obtained by the metric
upgrade algorithm [13]. According to (2), the matrix S can be given
by:

S¼M†W; ð13Þ
where M† is the Moore–Penrose pseudo-inverse of M. Further,

cTt ¼ f ðwtÞ ¼ κðwt ;WÞVΛ�1=2X: ð14Þ
Finally, in terms of (2), (13), (14), and the obtained rank parameter
K, the 3D shape of the tth image can be estimated as [2]:

S cTt
� �¼ cTt � I3

� �
M†W ð15Þ

3. Experiments

3.1. Experimental data and set-up

We evaluate the performance of our proposed method on
seven non-rigid motion datasets. The seven motion capture
sequences are: walking, face1, stretch, dance, face2, jaws, yoga,
respectively. For these sequences, the corresponding number
of frames (T) and the number of point tracks (n) are given in
Table 1. As an example, Fig. 1 shows one frame of the seven
image sequences.

Table 1
The number of frames (T) and the number of point tracks
(n) for seven motion capture sequences.

Dataset T n

walking 260 55
face1 74 37
stretch 370 41
dance 264 75
face2 316 40
jaws 240 91
yoga 307 41
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