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a b s t r a c t

Recent advances in stochastic learning, such as dual averaging schemes for proximal subgradient-based
methods and simple but theoretically well-grounded solvers for linear Support Vector Machines (SVMs),
revealed an ongoing interest in making these approaches consistent, robust and tailored towards sparsity
inducing norms. In this paper we study reweighted schemes for stochastic learning (specifically in the
context of classification problems) based on linear SVMs and dual averaging methods with primal–dual
iterate updates. All these methods favor properties of a convex and composite optimization objective.
The latter consists of a convex regularization term and loss function with Lipschitz continuous sub-
gradients, e.g. l1-norm ball together with hinge loss. Some approaches approximate in a limit the l0-type
of a penalty. In our analysis we focus on a regret and convergence criteria of such an approximation. We
derive our results in terms of a sequence of convex and strongly convex optimization objectives. These
objectives are obtained via the smoothing of a generic sub-differential and possibly non-smooth com-
posite function by the global proximal operator. We report an extended evaluation and comparison of the
reweighted schemes against different state-of-the-art techniques and solvers for linear SVMs. Our
experimental study indicates the usefulness of the proposed methods for obtaining sparser and better
solutions. We show that reweighted schemes can outperform state-of-the-art traditional approaches in
terms of generalization error as well.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In many domains dealing with online and stochastic learning,
the input instances are of very high dimension, yet within any
particular instance several features are non-zero. Therefore spe-
cific stochastic and online approaches crafted with sparsity indu-
cing regularization are of particular interest for many machine
learning researchers and practitioners. This paper investigates an
interplay between Regularized Dual Averaging (RDA) approaches
[1] (along with other techniques for solving linear SVMs in the
context of stochastic learning [2]) and parsimony concepts arising
from the application of sparsity inducing norms, like the l0-type of
a penalty.

One can see an increasing importance of correctly identified
sparsity patterns and proliferation of proximal and soft-
thresholding subgradient-based methods [1,3,4]. There are many
important contributions of the parsimony concept to the machine
learning field. One may allude to the understanding of the
obtained solution and simplified or easy to extract decision rules
[5–7]. On the other hand the informativeness of the obtained

features might be useful for a better generalization on unseen data
[5]. Approaches based on l1-regularized loss minimization were
studied in the context of stochastic and online learning by several
research groups [1,3,8,9] but we are not aware of any l0-norm
inducing methods which were applied in the context of Regular-
ized Dual Averaging and stochastic optimization.

In this paper we are trying to provide a supplementary analysis
and sufficient regret bounds for learning sparser linear Regularized
Dual Averaging (RDA) [1] models from random observations. We
extend and modify our previous research [10,11] and present
complementary proofs with fewer assumptions and discussion for
the reported theoretical findings. We use sequences of (strongly)
convex reweighted optimization objectives to accomplish
this goal.

This paper is structured as follows. Section 2 describes previous
work on l0-norm induced learning and some existing solutions to
stochastic optimization with regularized loss. Section 3.1 presents
a problem statement for the reweighted algorithms. Sections
3.2 and 3.5 introduce our reweighted l1-RDA and l2-RDA methods
respectively while Section 3.8 presents completely novel approach
based on probabilistic reweighted Pegasos-like linear SVM solver.
Sections 3.4 and 3.7 provide a theoretic background for our
reweighted RDA approaches. Section 4 presents our numerical
results and Section 5 concludes the paper.
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2. Related work

Learning with JwJ0 pseudonorm regularization is a NP-hard
problem [12] and can be approached via the reweighting schemes
[13–16] while lacking a proper theoretical analysis of convergence in
the online and stochastic learning cases. Some methods, like [17],
consider an embedded approach where one has to solve a sequence of
QP-problems, which might be very computationally- and memory-
wise expensive while still missing some proper convergence criteria.

In many existing iterative reweighting schemes [14,18] the
analysis is provided in terms of the Restricted Isometry Property
(RIP) or the Null Space Property (NSP) [19,14]. These approaches
solely rely on the properties which are difficult to access before-
hand in a data-driven fashion. This might be crucial if one decides
to evaluate methods for their potential applicability. For instance
in case of the Restricted Isometry Property, which is characterizing
matrixΦ, one is interested to find a constant δA ð0;1Þ such that for
each vector w we would have:

ð1�δÞJwJ2r JΦwJ2r ð1þδÞJwJ2:

The RIP was introduced by Candes and Tao [20] in their study of
compressed sensing and l1-minimization. But it cannot be directly
applied in the context of online and stochastic optimization
because we cannot observe matrix Φ immediately. This fact
directly impedes the successful implication of convergence guar-
antees based on the RIP or other related properties.

Other groups stemmed their research from the follow-the-
regularized-leader (FTRL) family of algorithms [1,9,21] and com-
plementary analysis for sparsity-induced learning. In primal–dual
subgradient methods arising from this family of algorithms one
aims at making a prediction wtARd on round t using the average
subgradient of the loss function. The update encompasses a trade-
off between a gradient-dependent linear term, the regularizer
ψ ðwtÞ and a strongly convex term ht for well-conditioned predic-
tions. Our research is based on FTLR algorithms with primal–dual
iterate updates, such as RDA [1], and corresponding theoretical
guarantees are very much along the lines of the latter.

3. Reweighted methods

3.1. Problem statement

In the stochastic Regularized Dual Averaging approach devel-
oped by Xiao [1] one approximates the loss function f(w) by using
a finite set of independent observations S ¼ fξtg1r trT . Under this
setting one minimizes the following optimization objective:

min
w

1
T

XT
t ¼ 1

f ðw; ξtÞþψ ðwÞ; ð1Þ

where ψ ðwÞ represents a regularization term. Every observation is
given as a pair of input–output variables ξ¼ ðx; yÞ. In the above setting
one deals with a simple classification model ŷt ¼ signð〈w; xt〉Þ and
calculates the corresponding loss f ðw;ξtÞ accordingly.1 It is common to
acknowledge Eq. (1) as an online learning problem if T-1.

The problem in Eq. (1) can be approached using a sequence of
strongly convex optimization objectives. The solution of every
optimization problem at iteration t is treated as a hypothesis of a
learner which is induced by an expectation of possibly non-
smooth loss function, i.e. Eξ½f ðw; ξÞ�. One can regularize it by a
reweighted norm at each iteration t. This approach in case of
satisfying the sufficient conditions will induce a bounded regret w.

r.t. the loss function which is generating a sequence of stochastic
subgradients endowing our dual space En [22].

For promoting sparsity we define an iterate-dependent reg-
ularization ψ tðwÞ9λJΘtwJ which in the limit (t-1) applies an
approximation to the l0-norm penalty. At every iteration t we will
be solving a separate convex instantaneous optimization problem
conditioned on a combination of the diagonal reweighting matri-
ces Θt. Specific variations of ψ tðwÞ for different norms (e.g. l1- and
l2-norm) will be presented in the next subsections. By using a
simple dual averaging scheme [22] we can solve our problem
effectively by the following sequence of iterates wtþ1:

wtþ1 ¼ arg min
w

1
t

Xt
τ ¼ 1

ð〈gτ ;w〉þψτðwÞÞþβt

t
hðwÞ

( )
; ð2Þ

where h(w) is an auxiliary 1-strongly convex smoothing term
(proximal operator defined as hðwÞ ¼ 1

2Jw�w0 J , where w0 is set to
origin), gtA∂f tðwtÞ represents a subgradient and fβtgtZ1 is a non-
negative and non-decreasing sequence, which determines the
boundedness of the regret function of our algorithms.2

In detail Eq. (2) is derived using a different optimization
objective where we have replaced static regularization term ψ ðwÞ
in Eq. (1) with the iterate-dependent term ψ tðwÞ. In the latter case
our optimization objective becomes

min
w

1
T

XT
t ¼ 1

ϕtðwÞ; ð3Þ

where composite function ϕtðwÞ is defined as ϕtðwÞ9 f ðw; ξtÞþ
ψ tðwÞ. Using the aforementioned dual averaging scheme from [22]
it is easy to show that the sequence wt in Eq. (2) will approximate
an optimal solution to Eq. (3) if we linearly approximate an
accumulated loss function f ðw; ξtÞ from ϕtðwÞ and add a smooth-
ing term h(w). For exact details the interested reader can refer to
Eq. (2.14) or in depth to Theorem 1 in [22].

3.2. Reweighted l1-Regularized Dual Averaging

For promoting additional sparsity to the l1-Regularized Dual
Averaging method [1] we define ψ tðwÞ ¼ψ l1 ;tðwÞ9λJΘtwJ1.
Hence Eq. (2) becomes:

wtþ1 ¼ arg min
w

1
t

Xt
τ ¼ 1

ð〈gτ ;w〉þλJΘτwJ1Þþ
γffiffi
t

p 1
2
‖w‖22þρJwJ1

� �( )
:

ð4Þ
For our reweighted l1-RDA approach we set βt ¼ γ

ffiffi
t

p
and we

replace h(w) in Eq. (2) with the parameterized version:

hl1 ðwÞ ¼ 1
2 ‖w‖22þρJwJ1: ð5Þ

Each iterate has a closed form solution. Let us define ηðiÞt ¼ λ
t

Pt
τ ¼ 1

ΘðiiÞ
τ þγρ=

ffiffi
t

p
and give an entry-wise solution by:

wðiÞ
tþ1 ¼

0; if j ĝ ðiÞ
t jrηðiÞt

�
ffiffi
t

p

γ
ðĝ ðiÞ

t �ηðiÞt signðĝ ðiÞ
t ÞÞ; otherwise

8><
>: ; ð6Þ

where ĝ ðiÞ
t ¼ t�1

t ĝ ðiÞ
t�1þ1

tg
ðiÞ
t is the i-th component of the averaged

gtA∂f tðwtÞ, i.e. ĝ t ¼ 1
t

Pt
τ ¼ 1 gτ .

3.3. Reweighted l1-RDA algorithm

In this subsection we will outline and explain our main algo-
rithmic scheme for the Reweighted l1-RDA method. It consists of a
simple initialization step, drawing a sample AtDS from the
dataset S, computation and averaging of the subgradient gt,

1 Throughout this paper we will fix f(w) to the hinge loss f ðw; ξt Þ ¼
max f0;1�yt 〈w; xt 〉g. 2 See Sections 3.4 and 3.7.
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