
Polynomial time solvable algorithms to a class of unconstrained
and linearly constrained binary quadratic programming problems

Shenshen Gu n, Rui Cui, Jiao Peng
School of Mechatronic Engineering and Automation, Shanghai University, 149 Yanchang Road, Shanghai 200072, PR China

a r t i c l e i n f o

Article history:
Received 1 April 2015
Received in revised form
16 July 2015
Accepted 28 September 2015
Available online 10 March 2016

Keywords:
Binary quadratic programming
Polynomial time solvable algorithm
Dynamic programming

a b s t r a c t

Binary quadratic programming (BQP) is a typical integer programming problem widely applied in the
field of signal processing, economy, management and engineering. However, it is NP-hard and lacks
efficient algorithms. Due to this reason, in this paper, some novel polynomial algorithms are proposed to
solve a class of unconstrained and linearly constrained binary quadratic programming problems. We first
deduce the polynomial time solvable algorithms to the unconstrained binary quadratic programming
problems with Q being a seven-diagonal matrix ðUBQP7Þ and a five-diagonal matrix ðUBQP5Þ respectively
with two different approaches. Then, the algorithm to unconstrained problem is combined with the
dynamic programming method to solve the linearly constrained binary quadratic programming problem
with Q being a five-diagonal matrix ðLCBQP5Þ. In addition, the polynomial solvable feature of these
algorithms is analyzed and some specific examples are presented to illustrate these new algorithms.
Lastly, we demonstrate their polynomial feature as well as their high efficiency.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider the following binary quadratic pro-
gramming (BQP):

min
xA f0;1gn

1
2
xTQxþcTx ð1Þ

where Q ¼ ðqijÞn�n is a symmetric matrix with zero elements in the
main diagonal, cARn is a real vector. As the binary quadratic
programming problem, xi takes only 0 or 1. As a result, there is
no loss of generality in assuming the zero diagonal because
x2i ¼ xið1r irnÞ. More specifically, the above problem is also
called unconstrained binary quadratic programming (UBQP). For
problem (1) with linear constraint aTxrbðaAZn

þ ; bAZþ Þ, it is
called linearly constrained binary quadratic programming (LCBQP).
BQP are typical optimization problems which is well known as NP-
hard problem (see [1]).

Many applications of BQP problem exist such as signal pro-
cessing, financial data analysis [2], molecular conformation [3] and
cellular radio channel assignment [4]. Various exact solution
methods for solving BQP and its variants have been proposed in
the literature (see, e.g., [4–10] and the references therein). Some
important methods include the decomposition method [4], semi-
definite relaxations and cutting planes method to improve the

quality of the bounds [8], and semidefinite and polyhedral
relaxation method [10].

We focus in this paper on a class of polynomially solvable cases
of the quadratic binary programming problems. These cases
include the unconstrained binary quadratic programming pro-
blems with Q being a five-diagonal matrix and a seven-diagonal
matrix (denoted by UBQP5 and UBQP7 respectively), and the lin-
early constrained binary quadratic programming problems with Q
being a five-diagonal matrix (denoted by LCBQP5). Identifying
polynomially solvable subclasses of problem BQP not only offers
theoretical insight into the complicated nature of the problem, but
also provides useful information for designing efficient algorithms
for finding optimal solution to problem BQP. More specifically, the
properties of the polynomially solvable subclasses provide hints
and facilitate the derivation of efficient relaxations for the general
form of BQP.

The remainder of this paper is organized as follows: In Section
2, the algorithm to problem UBQP7 is designed based on the
property of matrix Q. In Section 3, the algorithm to problem UBQP
5 is designed based on famous basic algorithm [11,12]. In Section
4, the algorithm to solve LCBQP5 is proposed by combining the
basic algorithm and the dynamic programming method. And in
Section 5, we make an analysis on the polynomial feature of these
algorithms. Next, some examples are given in Section 6 to illus-
trate these algorithms. Then, in order to demonstrate the effec-
tiveness and efficiency of these novel algorithms, the simulation
experiments are performed in Section 7. And finally, Section 8
concludes this paper.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.09.130
0925-2312/& 2016 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: gushenshen@shu.edu.cn (S. Gu).

Neurocomputing 198 (2016) 171–179

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.09.130
http://dx.doi.org/10.1016/j.neucom.2015.09.130
http://dx.doi.org/10.1016/j.neucom.2015.09.130
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.09.130&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.09.130&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.09.130&domain=pdf
mailto:gushenshen@shu.edu.cn
http://dx.doi.org/10.1016/j.neucom.2015.09.130


2. Polynomial solvable algorithm to UBQP7

First, in this section, we consider UBQP7 where Q is a seven-
diagonal symmetric matrix with zero diagonal elements which
takes

0 q12 q13 q14 ⋯ 0 0 0 0
q12 0 q23 q24 ⋯ 0 0 0 0
q13 q23 0 q34 ⋯ 0 0 0 0
q14 q24 q34 0 ⋯ 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 0 qn�3;n�2 qn�3;n�1 qn�3;n

0 0 0 0 ⋯ qn�3;n�2 0 qn�2;n�1 qn�2;n

0 0 0 0 ⋯ qn�3;n�1 qn�2;n�1 0 qn�1;n

0 0 0 0 ⋯ qn�3;n qn�2;n qn�1;n 0

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA
For each xi, it can be set to either 0 or 1. That is to say, if we use

enumeration method, there will be 2n possibilities. With the
increasing of the number of dimension, calculation will grow
exponentially.

Here, we proposed a novel algorithm to solve BQP7 in poly-
nomial time based on the property of matrix Q. In this algorithm,
each time when we set xi to 0 or 1, at most eight forms of f(x)
existed. This can lead to limited calculation, and make the algo-
rithm effective and efficient.

In our proposed algorithm, we first let i¼n and set xi; xi�1 and
xi�2 to 0 or 1, generating eight states of x ðx¼ ðx1;…; xnÞÞ and the
corresponding eight forms of f(x). For every two adjacent states of
x (only xi are different, like state ð0Þ and state ð1Þ, state ð2Þ and state
ð3Þ in Table 1), only two terms in f(x) are different. One is the term
contains variable xi�3 and the other is the constant term. When
we further set xi�3 to 0 and 1, these different two terms can be
compared. Thus, we eliminate the bad state and keep the good one
for next calculations. We can apply the similar process for the
remaining seven states. Therefore, each time when we assign 0 or
1 to xi, there will be only eight forms of f(x) left. The flow chart of
our algorithm is shown in Fig. 1 and the procedures of our algo-
rithm are given in detail as follows:

Procedure 2.1. Generate eight forms of f(x) by assigning 0 or 1 to
xi; xi�1; xi�2.

Let i¼n at the first round of calculation.

Assign ð0;0;0Þ, ð0;0;1Þ, ð0;1;0Þ, ð0;1;1Þ, ð1;0;0Þ, ð1;0;1Þ, ð1;1;0Þ,
and ð1;1;1Þ to ðxi�2; xi�1; xiÞ to generate eight forms of f(x), which is
summarized in Table 1.

Procedure 2.2. Set xi�3 to 0 and 1 respectively to generate the new
states. This is the key procedure of the whole algorithm.

Step 1: Set xi�3 to 0. For state ð0Þ and state ð1Þ in Table 1, they are
only different in the linear term coefficient of xi�3 and the
constant term. Therefore we set xi�3 ¼ 0, calculate f(x) of
state ð0Þ and state ð1Þ respectively. Compare these two
results to eliminate the bad state and preserve the good one
as the new state ð0Þ. Similarly, the new state ð1Þ can be
generated from state ð2Þ and state ð3Þ by setting xi�3 ¼ 0,
the new state ð2Þ is from state ð4Þ and state ð5Þ and the
new state ð3Þ is from state ð6Þ and state ð7Þ.

Step 2: Set xi�3 to 1. By applying the same updating process, we set
xi�3 to 1 and calculate f(x) of state ð0Þ and state ð1Þ.
Compare the results and choose the good one as the new
state ð4Þ. Similarly, we can obtain the new state ð5Þ from
state ð2Þ and state ð3Þ; the new state ð6Þ from state ð4Þ and
state ð5Þ; and the new state ð7Þ from state ð6Þ and state ð7Þ.
By applying the above two steps, we will get a new table of
eight forms of f(x) and its corresponding states of x.

Procedure 2.3. Set the remaining xi to 0 or 1.
Set i to i�1 and repeat Procedure 2.3, we can generate a table of

eight states of f(x) and its corresponding states of x for each time
when we set xi to 0 or 1. After every variable in x is being set to 0 or 1,
the final table contains only constant term of f(x) and its corre-
sponding states of x. Choose the optimal value and the corresponding
value of x to get the optimal solution.

Based on the above procedures, we can demonstrate the
polynomial solvable algorithm for UBQP7 as follows:

Algorithm 2.1. Polynomial solvable algorithm to UBQP7.

Step 1: Let i¼n and set xi, xi�1, and xi�2 to 0 or 1.
Step 2: Calculate f(x) separately when ðxi�2; xi�1; xiÞ is assigned

to ð0;0;0Þ, ð0;0;1Þ, ð0;1;0Þ, ð0;1;1Þ, ð1;0;0Þ, ð1;0;1Þ,
ð1;1;0Þ, ð1;1;1Þ, generating eight states of f(x).

Step 3: Let i¼ n�3.

Table 1
Different states of f ðxÞ.

States ðxi�2 ; xi�1 ; xiÞ f ðx1;…; xnÞ

state ð0Þ ð0;0;0Þ q12x1x2þ⋯þqi�4;i�3xi�4xi�3þqiþ1;iþ2xiþ1xiþ2þ⋯þqn�1;nxn�1xnþc1x1þ⋯þci�4xi�4þciþ1xiþ1þ⋯þcnxnþci�3xi�3

state ð1Þ ð0;0;1Þ q12x1x2þ⋯þqi�4;i�3xi�4xi�3þqiþ1;iþ2xiþ1xiþ2þ⋯þqn�1;nxn�1xnþc1x1þ⋯þci�4xi�4þciþ1xiþ1þ⋯þcnxnþðci�3þqi�3;iÞxi�3þci

state ð2Þ ð0;1;0Þ q12x1x2þ⋯þqi�4;i�3xi�4xi�3þqiþ1;iþ2xiþ1xiþ2þ⋯þqn�1;nxn�1xn þqn�1;nxn�1xnþc1x1þ⋯þci�5xi�5þciþ1xiþ1þ⋯þcnxn
þðci�4þqi�4;i�1Þxi�4þðci�3þqi�3;i�1Þxi�3þci�1

state ð3Þ ð0;1;1Þ q12x1x2þ⋯þqi�4;i�3xi�4xi�3þqiþ1;iþ2xiþ1xiþ2þ⋯þqn�1;nxn�1n þc1x1þ⋯þci�5xi�5þciþ1xiþ1þ⋯þcnxn
þðci�4þqi�4;i�1Þxi�4þðci�3þqi�3;i�1þqi�3;iÞxi�3þci�1þci

state ð4Þ ð1;0;0Þ q12x1x2þ⋯þqi�4;i�3xi�4xi�3þqiþ1;iþ2xiþ1xiþ2þ⋯þqn�1;nxn�1xn þc1x1þ⋯þci�6xi�6þciþ1xiþ1þ⋯þcnxnþðci�5þqi�5;i�2Þxi�5

þðci�4þqi�4;i�2Þxi�4þðci�3þqi�3;i�2Þxi�3þci�2

state ð5Þ ð1;0;1Þ q12x1x2þ⋯þqi�4;i�3xi�4xi�3þqiþ1;iþ2xiþ1xiþ2þ⋯þqn�1;nxn�1xn þc1x1þ⋯þci�4xi�4þciþ1xiþ1þ⋯þcnxnþðci�5þqi�5;i�2Þxi�5

þðci�4þqi�4;i�2Þxi�4þðci�3þqi�3;i�2þqi�3;iÞxi�3þci�2þqi�2;iþci

state ð6Þ ð1;1;0Þ q12x1x2þ⋯þqi�4;i�3xi�4xi�3þqiþ1;iþ2xiþ1xiþ2þ⋯þqn�1;nxn�1xn þc1x1þ⋯þci�6xi�6þciþ1xiþ1þ⋯þcnxnþðci�5þqi�5;i�2Þxi�5 þðci�4þ
qi�4;i�2þqi�4;i�1Þxi�4þðci�3þqi�3;i�2þqi�3;i�1Þxi�3 þci�2þqi�2;i�1þci�1

state ð7Þ ð1;1;1Þ q12x1x2þ⋯þqi�4;i�3xi�4xi�3þqiþ1;iþ2xiþ1xiþ2þ⋯þqn�1;nxn�1xn þc1x1þ⋯þci�6xi�6þciþ1xiþ1þ⋯þcnxnþðci�5þqi�5;i�2Þxi�5 þðci�4þ
qi�4;i�2þqi�4;i�1Þxi�4þðci�3þqi�3;i�2þqi�3;i�1þqi�3;iÞxi�3 þci�2þqi�2;i�1þqi�2;iþci�1þqi�1;iþci

S. Gu et al. / Neurocomputing 198 (2016) 171–179172



Download English Version:

https://daneshyari.com/en/article/411411

Download Persian Version:

https://daneshyari.com/article/411411

Daneshyari.com

https://daneshyari.com/en/article/411411
https://daneshyari.com/article/411411
https://daneshyari.com

