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a b s t r a c t

In this paper, we consider a multi-agent convex optimization problemwhose goal is to minimize a global
convex objective function that is the sum of local convex objective functions, subject to global convex
inequality constraints and several randomly occurring local convex state constraint sets. A distributed
primal-dual random projection subgradient (DPDRPS) algorithm with diminishing stepsize using local
communications and computations is proposed to solve such a problem. By employing iterative
inequality techniques, the proposed DPDRPS algorithm is proved to be convergent almost surely. Finally,
a numerical example is illustrated to show the effectiveness of the theoretical analysis.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Distributed cooperative control has attracted great attention
from researchers due to its broad applications in areas such as
formation control [1–4], network synchronization [5–11], neural
network optimization [12–15] and so on. Nowadays, distributed
multi-agent optimization, as an application area of distributed
cooperative control, has gradually become a research spotlight,
due to the emergence of large-scale networks such as internet
networks, mobile ad hoc networks, wireless sensor networks.

The goal of distributed multi-agent optimization with or
without constraints is to construct distributed algorithm to mini-
mize the global objective function that is composed of a sum of
local objective functions, each of which is known to only one
agent. Due to a lack of centralized authority in the network of
agents, more and more recent works are focused on designing
distributed multi-agent optimization algorithms. These distributed
algorithms share two common features: (1) each agent only
accesses its own objective function and exchanges limited infor-
mation with its local neighbor agents only; (2) the objective
function and the constraints depend upon a global decision vector,
which requires the agents reach an agreement on the optimal
solution. These features are highly related to the concept of con-
sensus in multi-agent networks, whose goal is designing control

mechanisms such that the group of autonomous agents reaches an
agreement via local communication [16–24].

Most related literature on parallel and distributed computation
builds on the seminal works [25–27], which are focused on opti-
mizing a global objective function among multiple processors.
Most of the recent works, for example, see [28–31,33,34,32,35–39]
are focused on multi-agent environments and study consensus
algorithm for achieving a cooperative behavior in a distributed
manner. In [30–32], the authors propose distributed subgradient
methods for cooperative optimization in multi-agent networks. In
[33–36], the authors propose the distributed primal-dual sub-
gradient methods for cooperative optimization with inequality
constraints in multi-agent networks. Distributed algorithms pro-
posed in [30,31,33–36] rely on deterministic projections, except in
[30] where the unconstraint optimization problem is considered.
Due to the uncertainty of the online transmission, the local con-
straint sets may not be explicitly observed in advance, in this case,
the projection operators randomly project the information to the
component of the constraint sets. In [37–39], the authors consider
distributed multi-agent subgradient algorithm with random pro-
jections, but none of them takes the inequality constraints into
account.

In this paper, a multi-agent optimization problem where the
goal is to minimize a global convex objective function that is the
sum of local convex objective functions, subject to global convex
inequality constraints and several randomly occurring local convex
state constraint sets is considered. To solve this problem, the
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distributed primal-dual random projection subgradient (DPDRPS)
algorithm is proposed to highlight the effects of randomly occur-
ring local constraints. This algorithm involves each agent per-
forming a local weighted averaging, which is time-varying, to
combine his estimate with the other agents' estimates he has
access to, taking a subgradient step along his local Lagrange dual
function, and randomly projecting the estimates on the local
constraint sets. The convergence of these algorithms with a
diminishing stepsize is provided. Finally, a numerical example is
illustrated to show the effectiveness of the theoretical analysis.
The contribution of this paper is mainly in two directions. First, we
propose a novel DPDRPS algorithm for convex optimization with
inequality constraints and randomly occurring local constraint
sets, which consists of a subgradient descent step with a local
time-varying weighted averaging step and a random projection
step, while in [33,34], the considered communication networks
are time-invariant. Second, we study the almost sure convergence
of the DPDRPS algorithm with a diminishing stepsize and its var-
iant using a mini-batch of random projections. To the best of our
knowledge, there is no previous work on distributed primal-dual
optimization algorithms using random projections. Finally, a
numerical example is given to show effectiveness of the theore-
tical analysis.

Notations: A vector is viewed as a column. For a vector x, JxJ
denotes the Euclidean norm. For a vector x and a closed convex set
X , dist x;Xð Þ denotes the distance of x from X , i.e., dist x;Xð Þ ¼
minyAX x�y

�� ��. For a vector x and a closed convex set X , PX ½x�
denotes projection of x on X , i.e., PX ½x� ¼ arg minyAX x�y

�� ��. R
denotes the real number set and Rn ¼R�⋯� R|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n

. Rn
þ denotes a

vector in Rn whose components are nonnegative. For matrix A, A½ �ij
denotes the (i,j)-th component of matrix A. The superscript T
denotes the transpose of the vector and a matrix. Pr½Z� and E½Z�
denote the probability and expectation of a random variable Z,
respectively.

2. Problem formulation and assumptions

2.1. Network model

We consider the multi-agent network operates synchronously.
The topology of the network at time kZ1 is represented by a
directed weighted graph G¼ ðV ; EðkÞ;WðkÞÞ, where V ¼ f1;2;…;Ng
denotes the set of vertices, EðkÞ ¼ ði; jÞ : fi; jgAV

� �
denotes the set

of edges, in which ði; jÞAEðkÞ indicates that agent i receives infor-
mation from agent j at time slot k, WðkÞARN�N is the adjacency
matrix with ½WðkÞ�ijZ0 being the weight assigned to edge (j,i). The
set of neighbors of vertex i at time slot k is denoted as
NiðkÞ ¼ fj : ði; jÞAEðkÞg, where iANiðkÞ for all iAV and kZ1. We
here make the following assumptions on the network commu-
nication graphs, which are standard in the analysis of distributed
convex optimization [30,31].

Assumption 1 (Network connectivity). There exists a scalar Q such
that the graph ðV ;⋃l ¼ 0;1;…;Q �1Eðkþ lÞÞ is strongly connected for all
kZ0.

Assumption 2 (Non-degeneracy). There exists a constant
0oηo1, such that ½WðkÞ�iiZη for all iAV and kZ0; if ½WðkÞ�ij40,
then ½WðkÞ�ijZη for all i; jAV and kZ0.

Assumption 3 (Double stochasticity). It holds that
PN

j ¼ 1 ½WðkÞ�ij ¼
1 for all iAV and kZ0;

PN
i ¼ 1 ½WðkÞ�ij ¼ 1 for all jAV and kZ0.

Remark 1. In [33,34], the authors investigated the multi-agent
optimization problem with inequality constraints, where the
considered local constraint sets are fixed and the communication

network is time-invariant. In this paper, we consider the randomly
occurring local constraint sets and time-varying communication
networks.

2.2. Problem formulation

We are interested in solving the following problem over the
multi-agent network

minimize f ðxÞ9
XN
i ¼ 1

f iðxÞ

subject to gðxÞr0

xAX9 ⋂
N

i ¼ 1
X i ð1Þ

where xARn is a global decision vector; f i : R
n-R is the convex

objective function of agent i, which is only known by agent i; g :

Rn-Rm are convex functions which are known by all the agents in
the network, where gðxÞr0 means that each component glðxÞr0,
l¼ 1;2;…;m; X iDRn represents the nonempty closed convex
compact constraint set of the global decision vector x of agent i,
which is only known by agent i. We denote Y9 xARn : glðxÞr0;

�
l¼ 1;2;…;mg. We assume that the feasible set is nonempty, i.e.,
X⋂Ya∅. On the other hand, it can be observed that Y is a closed
subset of Rn, which means that Y is compact. Hence, X⋂Y is
compact. The convexity of fi implies that of f, thus, f is continuous.
So, the optimal value fn of problem (1) is finite and Xn, denoted as
the set of primal points, is nonempty.

In some applications, the local constraint of agent i may not be
explicitly given in advance due to online constraints or uncertainty
[39]. In such a case, we assume the constraint set X i can be rea-
lized by the intersection of finitely many simple nonempty closed
convex constraints, i.e., X i ¼⋂jA Ii X

j
i, where Ii is the index set of

simple nonempty closed convex constraints of agent i.

Remark 2. The phase “randomly occurring” can be interpreted as
follows [40]: a wide class of practical systems are influenced by
disturbances that are caused by environmental circumstances. For
multi-agent systems with state constraints, such state constrains
themselves may experience random abrupt changes, which may
result from abrupt phenomena such as noisy communications and
repairs of the components. In a real-time networked environment,
due to the limited bandwidth, network-induced packet losses,
congestions, as well as quantization could be interpreted as a kind
of external disturbances that occur in a probabilistic way and are
randomly changeable in terms of their types and/or intensity.

Remark 3. Distributed algorithms proposed in [30,31,33–36] rely
on deterministic projections. In this paper, the random projection
is considered. On the other hand, in [37–39], the authors consider
distributed multi-agent subgradient algorithm with random pro-
jections, but none of them takes the inequality constraints into
account. In this paper, the inequality constraints are considered.

For a convex function f : Rn-R, a vector sf ðxÞARn is called the
subgradient of f at xARn when the following relation holds

sf ðxÞT ðx�xÞr f ðxÞ� f ðxÞ; for xAdomðf Þ;

where domðf Þ ¼ fxARn : f ðxÞrþ1g is the domain of f.
For a concave function g : Rn-R, a vector sgðxÞARn is called

the subgradient of g at xARn when the following relation holds

sgðxÞT ðx�xÞZgðxÞ�gðxÞ; for xAdomðgÞ;

where domðgÞ ¼ fxARn : gðxÞZ�1g is the domain of g.
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