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a b s t r a c t

In this paper, the non-fragile state estimation problem is investigated for a class of continuous neural
networks with time-delays and nonlinear perturbations. The estimator to be designed is of a simple linear
structure without requiring the exact information of the activation functions or the time-delays, and is
therefore easy to be implemented. Furthermore, the designed estimator gains are allowed to undergo
multiplicative parameter variations within a given range and the non-fragility is guaranteed against pos-
sible implementation errors. The main purpose of the addressed problem is to design a non-fragile state
estimator for the recurrent delayed neural networks such that the dynamics of the estimation error
converges to the equilibrium asymptotically irrespective of the admissible parameter variations with the
estimator gains. By employing a combination of the Lyapunov functionals and the matrix analysis tech-
niques, sufficient conditions are established to ensure the existence of the desired estimators and the
explicit characterization of such estimators are then given via solving a linear matrix inequality. Finally, a
simulation example is used to illustrate the effectiveness of the proposed design method.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

For several decades, recurrent neural networks (RNNs) have
been a focus of research mainly because of their capability of
learning and approximating nonlinear functions in an adaptive way.
So far, a variety of RNN architectures as well as RNN learning
schemes have been used for pattern recognition, classification,
regression and optimization problems with practical applications in
many areas such as system identification and control, trajectory
prediction, decision making and medical diagnosis [9,13]. On the
other hand, due to finite switching speed of amplifiers in electronic
neural networks and finite signal propagation time in biological
networks, the time-delays in signal transmission are often una-
voidable. If not properly taken into account, the time-delays would
cause the undesirable oscillation and even the instability. In the past
10 years or so, the time-delay phenomenon has received con-
siderable research attention in the dynamic analysis problems for
various neural networks [6,8,12,17,33]. For example, in [35], a kind

of observer-based adaptive neural network controller has been
designed for a class of single-input single-output strict-feedback
nonlinear stochastic systems with unknown time-delays. In [26],
the problem of global exponential stability of static neural networks
with time delay and impulses has been investigated by using the
Lyapunov functional and the Razumikhin-type techniques.

For the successful application of neural networks, it is often a
prerequisite to know the actual information about the neuron states
which can then be used for optimization or control purposes. How-
ever, due to resource and physical limits, it is quite common that only
partial information about the neuron states is available through the
network outputs especially in relatively large-scale neural networks.
As such, an imperative task is to estimate the neural states as precisely
as possible via the available network outputs [25], and the resulting
state estimation problem for neural networks has attracted an ever-
increasing research interest in the past decade and a rich body of lit-
erature has been published, see e.g. [3,5,7,20] and the references
therein. In particular, a state estimator has been designed in [27] for
discrete-time neural networks with Markovian jumping parameters
and time-varying delays. The problem of observer-based state esti-
mation has been studied in [15] for fuzzy neural networks (FNNs) with
time-varying structured uncertainties and time-varying delays.

In the course of controller/estimator implementation, it is often
the case that the actually implemented parameters are slightly dif-
ferent from the expected ones owing to various reasons such as
numerical roundoff errors, limited word length of the computer and
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the imprecision in analog–digital conversion. It is now a well-known
fact that small even tiny variations/drifts of the estimator/filter/con-
troller parameters could lead to dramatic changes (e.g. performance
degradation or even eventual instability) of the overall system
dynamics [2,10], and such kind of phenomenon is referred to as the
fragility. In the past few years, the non-fragility has become an
increasingly important performance index that aims to guarantee
that the desired system behavior is insensitive to the admissible
implementation errors for the controllers/estimators. For example, in
[37], a non-fragile H1 filter has been designed for a class of discrete-
time T–S fuzzy systems with both randomly occurring gain variations
(ROGVs) and channel fadings. In [28], the issue of the non-fragile
robust finite-time H1 control has been dealt with for a class of
uncertain nonlinear stochastic Itô systems via neural network. In [4],
a non-fragile procedure has been introduced to study the problem of
synchronization of neural networks with time-varying delay.

In the context of non-fragile estimation for neural networks, some
initial results have appeared in the literature. For example, in [23], the
non-fragile observer design problem has been dealt with for neural
networks with mixed time-varying delays and Markovian jumping
parameters by developing a reciprocal convex approach. Furthermore,
the non-fragile state estimation problem has been investigated in [16]
for a class of memristive neural networks with two different types of
memductance functions and uncertain time-varying delays by using the
Wirtinger-type inequality analysis. It should be pointed out that, in
[16,23], the structure of the estimator/observer to be designed has been
assumed to be similar to that of the underlying neural network so as to
facilitate the subsequent dynamics analysis. Such an assumption,
however, implies that the time-varying delays and the activation func-
tions would have to be exactly known in order to make practical sense
of the estimator/observer implementation. Unfortunately, utilization of
such complex estimators/observers is pretty inconvenient as this would
place great demands on the parameter identification as well as the
engineering realization. As such, a seemingly natural idea is to develop
an easy-to-implement state estimator which is of a simple structure so
as to facilitate the practical application with guaranteed estimation
performance, and this constitutes the main motivation of this paper.

In this paper, we deal with the non-fragile state estimation problem
for a class of continuous neural networks with time-varying delays. By
employing a combination of the Lyapunov functionals and the matrix
analysis techniques, sufficient conditions are established to ensure the
existence of the desired estimators and the explicit characterization of
such estimators are then given via solving a linear matrix inequality. A
simulation example is used to illustrate the effectiveness of the pro-
posed design method. Comparing to the existing results, the novelty of
this paper is mainly twofold: (1) the structure of the non-fragile esti-
mator is of a simple linear form that contains two constant gain
matrices, thereby facilitating the practical implementation and (2) the
estimator gains are allowed to tolerate multiplicative parameter var-
iations within a given range and such multiplicative form can better
reflect the gain-dependent perturbations.

Notation: The notation used in this paper is fairly standard except
where otherwise stated. MT represents the transpose of M. Rn repre-
sents the n dimensional Euclidean space and Rn�m is the set of all
n�m real matrices. The notation P40 means that P is a real, sym-
metric, positive definite matrix. jxj stands for the Euclidean norm of a
vector x. The notation diagfA1;A2;…;Ang stands for a block-diagonal
matrix, and n always denotes the symmetric block in a symmetric
matrix. The notation λmaxð�Þ shows the maximum eigenvalue.

2. Problem formulation

Consider a class of delayed neural network described by:

_xðtÞ ¼ �CxðtÞþAgðxðtÞÞþBgðxðt�hðtÞÞÞ ð1Þ

where xð�Þ ¼ ½x1ð�Þ; x2ð�Þ; � � � ; xnð�Þ�T ARn is the neural state vector,
gðxð�ÞÞ ¼ ½g1ðx1ð�ÞÞ; g2ðx2ð�ÞÞ; � � � ; gnðxnð�ÞÞ�T ARn is the nonlinear acti-
vation function with the initial condition gð0Þ ¼ 0, C ¼ diagfc1; c2;
…; cng is the positive definite diagonal matrix, A and B are the
connection weight matrix and the delayed connection weight
matrix, respectively. h(t) is the time-varying delay satisfying

0rhðtÞrh ð2Þ

_hðtÞrμ ð3Þ
where h and μ are constants.

The activation function gð�Þ satisfies the following Lipschitz
condition:

jgðxÞ�gðyÞjr jGðx�yÞj ð4Þ
where G¼ diagfg1; g2;…; gng is a known diagonal matrix.

The measurements of the neural network are expressed as
follows:

yðtÞ ¼DxðtÞþ f ðt; xðtÞÞ ð5Þ
where yðtÞARm is the measurement output, DARm�n is a known
constant matrix. f ðt; xðtÞÞ is a neuron-state-dependent nonlinear
perturbation at the output of the network with the initial condi-
tion f ð0;0Þ ¼ 0. f ðt; xðtÞÞ satisfies the following Lipschitz condition:

j f ðt; x1Þ� f ðt; x2Þjr jFðx1�x2Þj ð6Þ
where F ¼ diagf f 1; f 2;…; f ng is a known constant matrix.

The full-order non-fragile state estimator is of the following
form:

_̂x ðtÞ ¼ ðAFþΔAF Þx̂ðtÞþðBFþΔBF ÞyðtÞ ð7Þ
where x̂ðtÞ is the state estimation of the neural network, AF and BF
are the gain matrices of the estimator to be designed.ΔAF andΔBF

quantify the estimator gain variations satisfying the following
norm-bounded multiplicative form [11]:

ΔAF ¼ AFHAFAðtÞEA ð8Þ

ΔBF ¼ BFHBFBðtÞEB ð9Þ
where HA, HB, EA and EB are known matrices with appropriate
dimensions, FA(t) and FB(t) are unknown matrices satisfying FTAðtÞ
FAðtÞr I and FTBðtÞFBðtÞr I.

Remark 1. As discussed in the introduction, the non-fragile state
estimation problem for time-delayed neural networks has stirred
some initial research attention. In the existing literature (e.g. [16,23]),
two typical assumptions are that the estimator gain variation is
additive and the time-delays are exactly known due to their invol-
vement in the estimator structure. These assumptions are, unfortu-
nately, a bit restrictive in practice. On one hand, a high gain tends to
result in a big gain variation during the implementation, which
means that the range of the gain variations is largely dependent on
the gain itself. As such, the gain variation is usually multiplicative
(rather than additive) with respect to the gains. On the other hand, in
the case that the exact identification of the time-varying delays is
difficult, it is often desirable to have a delay-independent estimator
capable of tolerating the delay effects. Therefore, in this paper, a
novel delay-independent estimator is introduced in (7)–(9) where
the multiplicative gain variations are introduced.

For analysis convenience, we denote

ηðtÞ ¼ xT ðtÞ x̂T ðtÞ
h iT

; H1ðηðtÞÞ ¼ gT ðxðtÞÞ gT ðx̂ðtÞÞ� �T
;

H2ðt;ηðtÞÞ ¼ f T ðt; xðtÞÞ f T ðt; x̂ðtÞÞ
h iT

:
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