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a b s t r a c t

Collection of groups of high-dimensional matrix-valued data is becoming increasingly common in many
modern applications such as imaging analysis. The massive size of such data creates challenges in terms
of computing speed and computer memory. Numerical techniques developed for small or moderate-
sized datasets simply do not translate to such massive datasets. The need to analyze such data effectively
calls for the development of efficient dimension reduction techniques. We propose a novel dimension
reduction approach that has nice approximation property, computes fast for high dimensionality, and
also explicitly incorporates the intrinsic two-dimensional structure of the matrices. We approximate
each matrix as the product of a group-level left basis matrix, a group-level right basis matrix, and an
individual-level coefficient matrix, which are estimated through a two-stage singular value decom-
position. We discuss the connection of our proposal with existing approaches, and compare them both
numerically and theoretically. We also obtain theoretical upper bounds on the approximation error of
our method. In the numerical studies, ours is much faster than the most accurate one, comparable to the
near-optimal one both computationally and theoretically, and more precise than the one that requires
the same amount of memory.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

As the technology advances, matrix-valued data are more and
more common. For instance, a typical functional magnetic reso-
nance imaging (fMRI) dataset is usually represented as a group of
matrices of the same size, where each matrix is the measurement
of the blood oxygen level dependent contrast for one subject, with
each column corresponding to a vectorized three-dimensional
image at a certain time point, and each row being a sequence of
temporal observations for a particular brain voxel.

These matrices are often of high or even ultra-high dimension
that needs a large amount of memory. For instance, a collection of
fMRI data for 100 subjects may consist of 100 matrices with the
spatial dimension corresponding to as many as 200,000 voxels and
the temporal dimension consisting of around 200 time points,
which altogether requires about 30 gigabytes (GB) memory in
double precision. Hence, it is crucial to develop a group-wise
dimension reduction technique that is precise and scales well for
high-dimensional data, which is the goal of the current paper.

Most conventional dimension reduction techniques were
developed for groups of vector-valued data, such as the popular
principal component analysis (PCA) [1]. To apply these approaches
directly to matrix-valued data, we need to vectorize each matrix.
The conventional one dimensional (1D) PCA then projects vector-
valued observations onto a set of orthogonal directions that pre-
serve the maximum amount of variation in the data. These
directions are characterized by the leading eigenvectors of the
sample covariance matrix. However, the vectorization ignores the
intrinsic two-dimensional (2D) structure embedded in the matri-
ces, and creates high-dimensional vectors that increase compu-
tational/memory burden. This usually makes the follow-up
dimension reduction not efficient.

Several dimension reduction methods have been developed
that incorporate the 2D structure of matrices. Motivated by 1DPCA,
2DPCA of Yang et al. [2] projects each matrix onto the principal
eigen-space of the row–row covariance matrix without vector-
ization. 2DPCA can also be understood through the perspective of
a one-sided-type low rank approximation to matrices. However,
2DPCA only takes into consideration the row–row covariance
matrix. To fully capture both the row–row and column–column
correlations, Ye [3] proposed the generalized low rank approxima-
tions of matrices (GLRAM) approach which is a two-sided-type low
rank approximation. The idea of GLRAM originates from the
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minimization of the sum of squared residuals. The optimization
criterion has no closed form solution and naturally leads to an
iterative algorithm that can be slow. To achieve better computa-
tional efficiency, Ding and Ye [4] proposed a non-iterative algo-
rithm named two-dimensional singular value decomposition
(2DSVD) which only implements eigen-decomposition on the
row–row and column–column covariance matrices. Zhang and
Zhou [5] independently proposed two-directional two-dimensional
principal component analysis ((2D)2PCA) that is intrinsically
equivalent to 2DSVD. The reduction of the computation cost
inevitably makes the reconstruction error of 2DSVD and (2D)2PCA
larger than GLRAM, the optimal iterative procedure.

Besides computational speed, the limitation of the computer
memory is another major hurdle that one has to tackle when
analyzing massive data. Take the aforementioned fMRI data for
example. The large amount of memory needed is beyond general
computer capacity and the various algorithms discussed above are
hence not implementable.

To cope with memory-demanding data and further speed up
the computation, recently Crainiceanu et al. [6] proposed the
population value decomposition (PVD) approach that essentially
boils down to a two-step singular value decomposition (SVD)
algorithm. In the first step, SVDs are applied separately to indivi-
dual matrices that are of relatively small size, and the leading left
and right singular vectors are retained. This can be performed
either in parallel or sequentially and often requires much less
memory. In the second step, the leading left and right singular
vectors obtained in the first step are concatenated column-wise,
respectively; and SVD is applied again to each concatenated
matrix. These aggregated matrices are substantially smaller than
the raw data matrices if one only keeps the few leading singular
vectors. The resulting left singular vectors in the second step are
used to obtain the final approximation for the original matrices.
Obviously, ignoring the higher-order singular vectors in the first
step results in less accuracy for PVD. But PVD effectively reduces
the computational burden, and is applicable for high-dimensional
matrices. Recently Eloyan et al. [7] incorporated PVD nicely into a
likelihood-based independent component analysis framework.

One drawback of PVD though is that the computational effi-
ciency does come at the price of reduced approximation accuracy.
In this paper, we further improve PVD and develop an adjusted
PVD (APVD) algorithm that has the same computational cost and
requires the same amount of memory as PVD, but produces more
precise results. In fact, APVD often performs as accurate as GLRAM
and 2DSVD for matrices of small to moderate sizes when they can
be computed.

The key idea of the APVD modification arises from the obser-
vation that PVD assigns equal weights in the group-level SVD to
those leading singular vectors obtained in the first SVD step. We
all know that the singular vectors have a natural order of relative
importance as reflected by the corresponding singular values.
Hence, we adjust PVD by incorporating the relative importance of
the singular vectors, which indeed results in a more accurate
estimation of the group components. The first step of APVD is the
same as PVD. While in the second step, our APVD procedure
concatenates the scaled singular vectors, i.e. the product of the
singular vectors and their corresponding singular values from each
individual matrix, instead of concatenating just the singular vec-
tors. Furthermore, we establish theoretical justification for APVD
in terms of upper bound on the normalized reconstruction errors.

The rest of this paper is organized as follows. In Section 2, we
state the model and give a brief review of the GLRAM, 2DSVD, and
PVD procedures. In Section 3, we then describe the APVD algo-
rithm, and compare the computational complexities of the various
approaches along with their connections. The theoretical proper-
ties of APVD are studied in Section 4. Numerical comparisons

through simulation studies and a classical face image dataset are
presented in Section 5, to show that APVD performs comparable to
GLRAM and 2DSVD and better than PVD. We conclude in Section 6,
and relegate all proofs to Appendix A.

2. Preliminaries

2.1. The model

Consider there are Imatrices of dimension m� n, denoted as Xi,
i¼ 1;…; I. To achieve group dimension reduction for the matrices,
a reasonable model can be written as

Xi ¼ LWiR
T þEi; ð1Þ

where LARm�rL and RARn�rR are orthonormal matrices repre-
senting the left and right group components, respectively, WiA
RrL�rR is the individual coefficient matrix, and the error matrix Ei
contains the individual approximation errors. Throughout this
paper, we assume that

PI
i ¼ 1 Xi ¼ 0. If we choose rL⪡n and rR⪡m,

the size of the individual component Wi ðrLrRÞ is much smaller
than the size of the original data (mn), which achieves the goal of
dimension reduction.

The decomposition of Xi as in (1) is closely related to the SVD of
a single matrix. Suppose I¼1, that is, there is only one matrix.
Then the optimal L and R that minimize the sum of squares of the
approximation errors in Ei are the r¼minðrL; rRÞ leading left and
right singular vectors of X1, and W1 can always be required to be a
diagonal matrix with the r leading singular values. When I41,
Model (1) relaxes the requirement that all of the subject-specific
terms Wi should be diagonal matrices and only keep the ortho-
normal constraints of the group components. The reason is that
the subspace spanned by the columns of L (or R) can be thought of
as the best rank rL (or rR) subspace that spans the column (or row)
subspace of all the Xi's; the Wi's are the coefficients when pro-
jecting Xi onto L and R, which are not necessarily diagonal
matrices.

2.2. Review of existing methods

The GLRAM, 2DSVD, PVD (and APVD) procedures offer different
ways of estimating Model (1), as we shall review below. Least
squares offers a natural criterion for model estimation. It can be
shown that the least squares estimator of Wi is given bycWi ¼ L̂

T
XiR̂, once we obtain the group component estimates, L̂ and

R̂. Therefore, for the rest of this paper, we focus on the estimation
of L and R. Moreover, for simplicity, we describe how each
approach can be used to estimate the left component L; R can be
estimated in the same way using the transpose of Xi.

The GLRAM of Ye [3] borrows the minimum reconstruction
error property of SVD and seeks L, R and Wi to minimize the
reconstruction error in the least squares sense:

min
L;R;Wi

XI
i ¼ 1

‖Xi�LWiR
T‖2F ;

s:t: RTR¼ IrR ; L
TL¼ IrL ;

LARm�rL ; RARn�rR and WiARrL�rR ; ð2Þ
where J � JF is the matrix Frobenius norm.

Ye [3] pointed out that the optimization problem (2) has no
closed form solutions for L and R. Hence, GLRAM solves the pro-
blem in an iterative fashion. In each iteration, it alternates the
updating of L (or R) as the leading rL (or rR) eigenvectors of

PI
i ¼ 1

XiRR
TXT

i (or
PI

i ¼ 1 X
T
i LL

TXi), by fixing R (or L) as the corresponding
estimate obtained in the previous iteration. The algorithm termi-
nates until it reaches a certain convergence criterion.
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