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a b s t r a c t

Based on model predictive control techniques, this paper presents a discrete-time recurrent neural
network for solving four-tank benchmark problem which is reformulated to a convex programming
problem. If the weighting matrices are positive definite symmetric, it is shown that the proposed neural
network is globally exponentially stable and exponentially convergent to the exact optimal solutions.
Finally, the experimental results have testified the effectiveness of the proposed approach and shown
that the four-tank benchmark problem can be well resolved.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Model Predictive Control (MPC) is a control method based on
optimization, by solving an open-loop optimal control problem at
each sampling instant computes the current control input. MPC is
referred as receding horizon control, which is a senior strategy of
multivariable control systems for optimizing the performance. The
optimal problem's initial state is treated as the current system
state, and future states are predicted by a model of the system.
Dating back to late 1970s, the development and applications of
MPC strategy were presented. Richalet et al. [1] proposed the first
MPC technology, based on quadratic programming (QP). In recent
years, MPC leads to the formulations of nonconvex optimization
problems [2]. However, there are no reliable optimization proce-
dures for solving such problems which would find exact solutions
reliably and quickly [3]. It has large-scale applications in the pro-
cess industry [22–27], chemical, food processing industries, eco-
nomics, aerospace industries, and robotics. The application in the
four-tank plant can be considered as a model of many industrial
applications in process industry, for instance, chemical and pet-
roleum chemistry. Moreover, four-tank benchmark has been made
use of as an educational tool to teach advanced multivariable
control techniques. The hot problem of the hierarchical and dis-
tributed model predictive control (HD-MPC) four-tank benchmark

[11,28] is used to test, compare and evaluate different control
system design approaches. The HD-MPC four-tank benchmark has
different properties: (1) there is strong coupling between sub-
systems and it can manipulate the degree of coupling expediently;
(2) the plant has nonlinear dynamics; (3) the states can be mea-
sured; (4) hard states and input constraints subordinate to the
plant; (5) the plant can be safely operated.

Neurodynamic optimization using recurrent neural networks
(RNNs) has become one applicable and promising approach. In the
past two decades, varieties of neural networks have been applied
for MPC. In general, the applications of RNNs for MPC branch out
into two classifications: solving system modeling [15] and opti-
mization [16]. The applications of RNNs for optimization have been
widely investigated since the seminal study of Hopfield and Tank
[9,10]. They played a significant role in neural network field, their
work vitalized many researchers to exploit neural network models
to figure out linear and nonlinear optimization problems. Kennedy
and Chua made the Tank–Hopfield network expanding and
reformative, they used the penalty method for solving nonlinear
programming problem [5]. Zhang [17] solved nonlinear program-
ming problems with equality constraints by utilizing the Lagran-
gian neural network. To the latest development such as Xia and
Wang, in [6], a recurrent neural network was proposed for solving
nonlinear convex optimization subject to nonlinear inequality
constraints. In [7], it discussed the exponential convergence of the
neural network and solved convex quadratic programming. In [8],
a recurrent neural network was presented for solving nonlinear
convex programs with linear constraints. In particular, Forti et al.
[20] have introduced a generalized neural network for solving
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non-smooth nonlinear programming problems by means of pen-
alty function method and it has a constraint neuronwith high-gain
nonlinearities. And He et al. [32] solved bilevel linear program-
ming problem using a recurrent neural network. Hu et al. [36,37]
proposed neural networks for solving synchronization issues. Also,
there is another intelligent method of swarm neural networks for
solving equalities-constrained nonconvex optimization in [21].
There are some applications that utilize the neural network such
as multiuser power control [18], optimal real-time price in smart
grid [19], and ultra-thin shape memory alloy wire [29]. Nowadays,
some constrained optimization problems have been proposed by
Liu and Wang [30,31]. Regarding optimal problems, there are a lot
of researches about it [33–35]. Unlike several numerical optimi-
zation methods, recurrent neural networks for solving optimiza-
tion problems are readily hardware-implementable. RNNs as par-
allel computational models for real-time optimization and appli-
cations are more effective. In the neural-network literature, there
exist a few RNN models for solving quadratic optimization pro-
blems with bound constraints [14]. RNNs can be divided into
continuous-time recurrent neural networks and discrete-time
recurrent neural networks. Compared with continuous-time
RNNs, the discrete-time RNN models have some advantages,
such as numerical simulation and digital implementation.

In this paper, motivated by the effectiveness and efficiency of
neural network optimization method, we have attempted to solve
four-tank benchmark problem using neural network approach.
Compared with iterative algorithm [4], our main contribution is to
design a discrete-time recurrent neural network for solving the
four-tank benchmark problem. The presented neural network
optimization method is effective and has a faster convergence rate.
Using the MPC scheme, the four-tank problem is formulated to a
quadratic optimization problem, and a recurrent neural network is
presented for solving this problem. Also, we have eliminated the
formulated four-tank benchmark problem's state error and control
error to make the system stable. Moreover, global exponential
convergence can be certified in solving the reformulated optimi-
zation problem. In addition, a simple circuit is established to
depict the neural network. Finally, simulation result shows the
effectiveness and performance of the neural network for solving
four-tank benchmark problem.

This paper is organized as follows. In Section 2, the four-tank
benchmark about MPC is stated, and a recurrent neural network is
proposed to solve the four-tank benchmark. In Sections 3, a set of
sufficient conditions are derived for the global exponential stability.
Simulation result is presented in Section 4. In Section 5, we sum-
marize the main results of the paper and make a concluding remark.

2. Problem formulation and model description

Fig. 1 shows structure of the four-tank benchmark. The tanks
3 and 4 (at the top of the plant) discharge into the corresponding
tanks 1 and 2 (at the bottom of the plant), respectively. The three-
way valves are emulated by a proper calculation of the setpoints of
the flow control loops according to the considered ratio of the
three-way valve. Hence, the inlet flows of the three-way valves qa
and qb can be considered as the manipulated variables of the
real plant.

The plant is simplified and described as the following differ-
ential equations [4]:
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where ai, hi, i¼ 1;…;4, indicate the discharge constant of tank i
and the water level, respectively; g is the gravitational acceleration
(g ¼ 9:806 m=s2 in this study), S is the cross section of each tank,
and rj, qj, jAfa; bg refer to the ratio of the three-way valve of pump
j and the flow of pump j, respectively. Some parameters of the
plant, such as the ratio γ of each three-way valve and the cross
section of the outlet hole ai, can be manually regulated by the
researcher. Moreover, the level of tanks as well as the inlet flows
are physically constrained. Therefore, the dynamics of the plant
can be adjusted by the researcher.

Define the deviation variables, and use linear model at an
operating point given by the equilibrium levels and flows, shown
as follows:

xi ¼ hi�h0i ; iA 1;2;3;4f g;
uj ¼ qj�q0j ; jA a; b

� �
; ð2Þ

then we can acquire the continuous-linear model:

_x ¼ AcxþBcu;

y¼ Ccx;

(
ð3Þ

where x¼ ðx1; x2; x3; x4Þ, u¼ ðua;ubÞ, y¼ ðx1; x2Þ.
We can get the discrete-time model through the zero-order

hold method with a sampling period of 5 s, which is shown below

xðkþ1Þ ¼ AxðkÞþBuðkÞ;
yðkÞ ¼ CxðkÞ:

(
ð4Þ

By using an MPC scheme, we can depict an online finite horizon
open-loop optimal control problem,

min Jðk;uÞ ¼
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s:t: xðkþ iþ1∣kÞ ¼ Axðkþ i∣kÞþBuðkþ i∣kÞÞ;
xðk∣kÞ ¼ xðkÞ;
x ¼ ½hmin;hmin;hmin;hmin�T rxðkþ i∣kÞr ½h1max;h2max;h3max;h4max�T

¼ x;
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Fig. 1. Simplified model of the four-tank process.
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