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a b s t r a c t

In this paper, some feed-forward neural networks (FNNs) interpolation operators based on scattered data
are introduced. Further, these operators are used as approximators to approximate bivariate continuous
target function. By means of the translations and dilates of logistic function, some FNNs quasi-
interpolation and exact interpolation operators are constructed, respectively. Using the modulus of
continuity of function and the mesh norm of scattered data as measures, the corresponding approx-
imation errors of the constructed operators are estimated. In addition, the well-known central B-splines
are used to construct FNNs interpolation operators with compact support, and the corresponding
approximation errors are also estimated.

Crown Copyright & 2016 Published by Elsevier B.V. All rights reserved.

1. Introduction

In the theory and application of feed-forward neural networks
(FNNs), activation function of networks plays an important role,
which is often taken as sigmoidal function, i.e., the bounded
function on R satisfying

lim
x-�1

σðxÞ ¼ 0; lim
x-þ1

σðxÞ ¼ 1:

Among numerous sigmoidal functions, the logistic function
defined by

σðxÞ ¼ 1
1þe� x ð1:1Þ

is typical, and which has been used extensively as activation
function of FNNs.

As we know, FNNs with sigmoidal activation function are uni-
versal approximator. Theoretically, any continuous or Lebesgue
integrable function defined on a compact set can be approximated
by an FNN with sigmoidal activation function to any desired
degree of accuracy by increasing the number of hidden neurons,
which is usually called density problem of FNNs approximation. At
present, this problem has been satisfactorily solved, and many
classical results can be found in more articles, such as Cybenko
[31], Funahashi [32], Hornik et al. [34,35], Hornik [36,37], Ito [59],
Chui and Li [22], Kurková [38], Leshno et al. [43], Park and

Sandberg [49,50], Chen [13–15], Chen and Chen [16–18], Chen
et al. [20,19], and Pinkus [51]. Another important problem for such
approximation is called complexity problem, which mainly
describes the relationship between the approximation error and
the number of neurons in hidden layer. This problem has attracted
a lot of interests of researchers. We refer readers to [7,12,39–
41,6,47,48,53,57,58,10,21].

To study the complexity problem, the FNNs operators usually
are constructed for approximating the target function, and the
approximation errors are estimated. In 1992, Cardaliaguet and
Euvrard [11] first introduced an interesting neural network
operator called Cardaliaguet Euvrard operator by using the cen-
tered bell-shaped continuous function with compact support. In
1997, Anastassiou [1] discussed the approximation error of the
operators. More researchers, such as Attali and Pagès [6], Suzuki
[53], Hahm and Hong [33], Lewicki and Marino [44], Xu and Cao
[57,58], and Chen and Cao [21], constructed various FNNs opera-
tors with the sigmoidal function and studied their approximation
properties. Recently, Costarelli [23,24] and Costarelli and Spigler
[25–30] made a series of investigation on the univariate or mul-
tivariate FNNs operators with sigmoidal activation functions, and
obtained some interesting results. Using a class of specific sig-
moidal function called hyperbolic tangent function as activation
function of FNNs, Anastassiou [2–5] made some in-depth research
on the construction and approximation of FNN operators.

On the other hand, it is well known that interpolation is a class
of important method to approximate or fit function all the time.
Llanas and Sainz [45] first applied the interpolation idea into FNNs
and constructed a class of interpolation FNNs with nondecreasing
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activation function that could approximately interpolate uni-
variate or multivariate target functions. Such type of FNNs, in fact,
can be regarded as quasi-interpolation operators from mathema-
tical viewpoint. In [23], Costarelli constructed a kind of inter-
polation FNNs with ramp and central B-splines activation func-
tions to approximate continuous target functions defined on
bounded intervals, and in [24], he further studied the case that the
activation function is the tensor product of B-splines, and proved
that the constructed FNNs operators could interpolate the target
functions on uniform or non-uniform spaced grid.

All the researches on FNNs interpolation mentioned above are
based on the nodes (samples) of rule distribution. In practical
application, however, there are a large number of scattered data.
Since one does not have any control on where these data (sam-
pling points) site, compared with the interpolation with nodes
(samples) of rule distribution, it is difficult to tackle the inter-
polation based on scattered data [54–56,60]. The main purpose of
this paper is to study the approximation of scattered data by
means of FNNs interpolation operators. We will construct some
FNNs exact interpolation or quasi-interpolation operators based
on scattered data to approximate bivariate function. The activation
function of constructed FNNs operators is generated by the
translation and dilatation of the logistic function, and thus it is
easy to compute and apply in reality. Also, we will utilize some
techniques of mathematical analysis and methods of approxima-
tion theory to estimate the approximation error of the operators.
In addition, we will make some discussions on the construction
and approximation of FNNs operators with B-splines activation
function.

The rest of this paper is organized as follows. In Section 2, we
will study the construction and approximation of FNNs quasi-
interpolation operators with activation function generated by the
translation and dilatation of the logistic function. In Section 3, we
will construct the FNNs exact interpolation operators by the acti-
vation functions given in Section 2, and estimate the approxima-
tion error. In Section 4, we will use B-splines to construct FNNs
quasi-interpolation operators and obtain the estimation of
approximation error of the operators. Finally, some conclusions
and remarks will be arranged in Section 5.

2. The construction and approximation of FNNs quasi-
interpolation operators

For the logistic function given in (1.1), setting

gσðxÞ≔1
2 σðxþ1Þ�σðx�1Þð Þ;

then we have [21]

� gσ ðxÞ ¼ e� e� 1

2 � ex
ð1þ exþ 1Þð1þex� 1Þ.� gσ ðxÞ40.

� gσ ðxÞ is an even function.
� gσ ðxÞ is non-decreasing for xo0 and non-increasing for x40.
� The support of gσ ; suppðgσÞ, is R.

Let xiA ½�1;1�2 �R2 ði¼ 1;2;…;NÞ be sample points, which
constitute the interpolation nodes of samples:
ðx1; f 1Þ; ðx2; f 2Þ;…; ðxN ; f NÞ. When x1; x2;…; xN are scattered, that is,
they are not any uniform spaced grid points, we call ðx1; f 1Þ; ðx2; f 2Þ;
…; ðxN ; f NÞ scattered data. To characterize scattered data points set
X≔fx1; x2;…; xNg, we need three quantities [54]: mesh norm hX,
separation radius qX, and mesh ratio ρX, which are defined as

hX≔ sup
yA ½�1;1�2

inf
ξAX

dðξ; yÞ; qX≔
1
2
min
ξaξ0

dðξ; ξ0Þ; ρX≔
hX
qX

;

respectively, where dð�; �Þ denotes the Euclidean distance.

Obviously, ρXZ1. If there exists a ρ independent of X such that
ρXrρ, then we say that X is ρ-uniform. And in this section and
Section 3, we all assume that X is ρ-uniform.

We use Bðxi;hXÞ to denote the closed ball with radius hX and
center xi. It is not difficult to know that

½�1;1�2D ⋃
N

i ¼ 1
Bðxi;hXÞ:

We also denote the set of all continuous functions defined on
½�1;1�2 by C½�1;1�2 , which forms a Banach space with norm

J f J≔ max
xA ½�1;1�2

j f ðxÞj :

The modulus of continuity of f AC ½�1;1�2 is defined as [46]

ωðf ; tÞ≔ sup
Jh J 2 r t

max
xþh;xA ½�1;1�2

j f ðxþhÞ� f ðxÞj ; t40;

where J � J2 is the Euclidean norm. The modulus of continuity of
continuous function f is an important measure to depict the con-
tinuity and smoothness of function f, which plays an important
key role in the approximation theory and harmonic analysis, and it
is often used as a metric to estimate the approximation error.
Specially, if for an α (0oαr1) there is a constant C40, such that
ωðf ; tÞrCtα ðt-0þ Þ, then we say that f is a Lipschitz function and
write f ALipCα.

For the scattered points xjA ½�1;1�2ð1r jrNÞ, the logistic
function given in (1.1), and parameter λ40, we define

gλj ðxÞ≔
1
2

σ
Jx�xj J2

λ
þ1

� �
�σ

Jx�xj J2
λ

�1
� �� �

: ð2:1Þ

Then

gλj ðxÞ ¼
e�e�1

2
�

e
J x� xj J 2

λ

1þe
J x� xj J 2

λ þ1
� �

1þe
J x� xj J 2

λ �1
� �; j¼ 1;2;…;N: ð2:2Þ

For any function f defined on ½�1;1�2, scattered points
xjA ½�1;1�2ð1r jrNÞ, and gλj ðxÞ given by (2.1), we define quasi-
interpolation operators

ðQλ
Nf ÞðxÞ≔

XN
i ¼ 1

f ðxiÞ
gλi ðxÞPN

j ¼ 1 g
λ
j ðxÞ

: ð2:3Þ

Now we estimate the approximation error of quasi-
interpolation operators ðQλ

Nf Þ given in (2.3) approximating con-
tinuous function f defined on ½�1;1�2. From the definition (2.3),
we have

j f ðxÞ�ðQλ
Nf ÞðxÞjr

XN
i ¼ 1

j f ðxÞ� f ðxiÞj
gλi ðxÞPN

j ¼ 1 g
λ
j ðxÞ

r
X

iA fi: Jx� xi J 2 o2hX g

j f ðxÞ� f ðxiÞj
gλi ðxÞPN

j ¼ 1 g
λ
j ðxÞ

þ
X

iA fi: Jx� xi J 2 Z2hX g

j f ðxÞ� f ðxiÞj
gλi ðxÞPN

j ¼ 1 g
λ
j ðxÞ

rωðf ;2hXÞþ
X

iA fi: J x� xi J 2 Z2hX g

j f ðxÞ� f ðxiÞj
gλi ðxÞPN

j ¼ 1 g
λ
j ðxÞ

≕ωðf ;2hXÞþΔ1:

To estimate Δ1, we rewrite Δ1 as

Δ1 ¼
X

iA fi:2hX r Jx�xi J 2 o3hX g
þ

X
iA fi:3hX r Jx� xi J 2 o4hX g

þ⋯þ
X

iA fi:khX r Jx� xi J 2 o ðkþ1ÞhX g
þ⋯

0
@

1
A

�j f ðxÞ� f ðxiÞj
gλi ðxÞPN

j ¼ 1 g
λ
j ðxÞ

:

From the definition of hX it follows that for given x there exists
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