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HIGHLIGHTS

Online evaluation of sensor fusion methods is crucial.

Overview of sensor fusion in wearable robots like prostheses and exoskeletons.
Main sensors: electromyography, electroencephalography, and mechanical sensors.
Emphasizes multimodality, adaptation and switching between sensor fusion schemes.
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Modern wearable robots are not yet intelligent enough to fully satisfy the demands of end-users,
as they lack the sensor fusion algorithms needed to provide optimal assistance and react quickly to
perturbations or changes in user intentions. Sensor fusion applications such as intention detection have
been emphasized as a major challenge for both robotic orthoses and prostheses. In order to better examine
the strengths and shortcomings of the field, this paper presents a review of existing sensor fusion methods
for wearable robots, both stationary ones such as rehabilitation exoskeletons and portable ones such as
active prostheses and full-body exoskeletons. Fusion methods are first presented as applied to individual
sensing modalities (primarily electromyography, electroencephalography and mechanical sensors), and
then four approaches to combining multiple modalities are presented. The strengths and weaknesses of

the different methods are compared, and recommendations are made for future sensor fusion research.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Wearable robots have developed rapidly over the last decades
and have demonstrated their ability to assist humans in a vari-
ety of military, medical, and industrial applications. Perhaps the
most iconic examples of such wearable robots are full-body ex-
oskeletons such as the Hybrid Assistive Limb (HAL) [ 1], but smaller
powered orthoses are no less important. Furthermore, powered
prosthetic arms [2] and legs [3] also represent a type of wearable
robot.

Existing wearable robots face numerous challenges with regard
to both hardware and software. One major challenge is that the
robot usually lacks the capability to adequately recognize the ac-
tions and intentions of the human wearer. Consequently, it cannot
properly assist the wearer, a drawback that has been emphasized
both in exoskeletons [4] and prosthetics [5]. In an effort to over-
come these challenges, engineers have used numerous sensors and
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inference methods to obtain information about the wearer’s inten-
tions.

In many cases, the sensors used are those already built into
the wearable robot, such as joint angle sensors. More advanced
approaches incorporate electrophysiological measurements such
as electromyography (EMG) or electroencephalography (EEG), or
alternatively mechanical sensors placed on a part of the body that
is not covered by the wearable robot. Recently, there has been
a push to combine multimodal information, combining different
sensor types to obtain a more complete picture of the user [6-9].
Multimodal information, however, also requires new sensor fusion
algorithms.

This paper presents a review of sensor fusion algorithms for
wearable robots, both robotic orthoses (e.g. exoskeletons) and
prostheses. It is aimed primarily at engineers who need to convert
raw sensor data to information about the wearer’s actions and
motor intentions and is divided into two larger sections. The first
covers unimodal systems, where multiple signals are obtained
from a single type of sensor (though multiple sensors of the same
type are generally used). Section 2 covers multimodal systems,
where it is necessary to combine signals from different types of
sensors altogether. While there have not been detailed reviews
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Fig. 1. Overall structure of the robot’s decision-making process.
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mentioned briefly, as they have been very well-reviewed in
other publications and are generally not considered sensor fu-
sion.

- Not every example is referenced for every sensor fusion al-
gorithm; if numerous systems use essentially the same algo-
rithms, only the most informative examples are given.

- We only review sensor fusion approaches that are used with a
wearable robot or in similar conditions. For example, systems
that use EEG to control a robot arm are included; systems that
control a cursor on a screen are not.

- Sensor fusion approaches must be used for real-time robot con-
trol or clearly suitable for real-time use.

We begin the paper by introducing some general terms related
to sensor fusion in Section 2. Section 3 presents unimodal
sensor fusion, where a single modality is used in classification
or regression. Section 4 then presents multimodal sensor fusion,
where two or more modalities are used. Section 5 briefly discusses
sensor fusion performance evaluation, regardless of modality or
sensor fusion algorithm. Finally, Section 6 concludes the paper
with a summary and general discussion of the state of the art in
wearable robotics.

2. General terms

The general process of robotic decision making is shown in
Fig. 1. The first step of the process, signal acquisition, will not be
covered in this paper.

Filtering is the first, preprocessing stage of sensor fusion. It al-
most always includes bandpass filtering, which removes all com-
ponents of the raw digital signal except those in a defined pass
band (e.g. 20-500 Hz for EMG). This removes low-frequency me-
chanical artefacts and high-frequency aliasing effects. Other pos-
sible types of filtering include notch filtering to remove electrical
noise at 50 or 60 Hz or spatial filtering to remove unwanted signal
components in the same frequency band as the useful signal [12].

Feature extraction is the process of extracting useful infor-
mation (‘features’) from filtered signals. This can be as simple as
rectification, but more complex features such as spectral power
distribution are also common. Notably, features do not need to
have the same sampling frequency as the raw signals. Instead, fea-
ture extraction commonly includes segmentation, which divides
the raw signals into windows—intervals of a defined length. Fea-
tures are extracted over the entire window and are output at the
end of the window. A window can optionally overlap with the pre-
vious window, which allows more frequent commands to the robot
and fewer sudden changes in sensor fusion output. An example of
feature extraction from windows is shown in Fig. 2.
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Fig. 2. Windowing and feature extraction for a signal x(t) with 1-s windows. w
represent windows while f(T) represent features extracted at time T from the
corresponding window. In the first example, windows do not overlap; in the second
example, each window overlaps the preceding one by 50%.

Classification and regression are alternatives to each other,
and a wearable robot generally utilizes one or the other. Multiple
features are used as inputs simultaneously. A good introduction
to both approaches is available from Bishop [13], but in wearable
robotics:

- Classification assigns a discrete label to extracted features
(e.g. “hand closing”, “leg lifting”). This discrete label generally
represents the action that the user wants to perform, and
a high-level robot controller is necessary to decide how to
react to this desired action. The high-level controller outputs
the velocity/torque the robot should apply, and a low-level
controller ensures that this velocity/torque is applied.

- Regression converts features to continuous values (e.g. joint
torques). These values represent either the velocity/torque the
user is trying to apply or directly the velocity/torque the robot
should apply. Therefore, only low-level rather than high-level
robot control is required.

In prosthetics, classification is sometimes referred to as “pat-
tern recognition based control” while regression is sometimes
referred to as “proportional control” or “continuous decoding”.
For simplicity’s sake, we refer to both by their general, field-
independent names.

Most classifiers are based on supervised machine learning: they
learn classification rules from a set of previously recorded and
labelled training data [13]. The accuracy of such classifiers is then
defined as the percentage of correct class assignments. Regression
is also often based on supervised machine learning, but can also
utilize manually defined regression rules. As continuous output
values allow smoother control, the sampling frequency of features
for regression is generally higher than for classification and can be
as high as that of the raw signals.

Robot control takes the results of classification or regression
and converts them into the command given to the wearable robot’s
actuators. Though it will not be described in detail, readers should
keep in mind that, as mentioned above, classification requires
more complex (high-level) robot control algorithms than regres-
sion.
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