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a b s t r a c t

Fuzzy c-means clustering algorithm (FCM) is a method that is frequently used in pattern recognition. It
has the advantage of giving good modeling results in many cases, although, it is not capable of specifying
the number of clusters by itself. Aimed at the problems existed in the FCM clustering algorithm, a kernel-
based fuzzy c-means (KFCM) is clustering algorithm is proposed to optimize fuzzy c-means clustering,
based on the Genetic Algorithm (GA) optimization which is combined of the improved genetic algorithm
and the kernel technique (GAKFCM). In this algorithm, the improved adaptive genetic algorithm is used
to optimize the initial clustering center firstly, and then the KFCM algorithm is availed to guide the
categorization, so as to improve the clustering performance of the FCM algorithm. In the paper, Matlab is
used to realize the simulation, and the performance of FCM algorithm, KFCM algorithm and GAKFCM
algorithm is testified by test datasets. The results proved that the GAKFCM algorithm proposed over-
comes FCM's defects efficiently and improves the clustering performance greatly.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Traditional pattern recognition involves two tasks: unsu-
pervised clustering and supervised classification [1,2]. In unsu-
pervised clustering, samples without class labels are grouped into
meaningful clusters. These clusters can be utilized to describe the
underlying structure in data, which is helpful for better under-
standing of data. In supervised classification, samples with class
labels are used to build the classification mechanism, through
which class labels can be provided for new samples.

When class information is available, most traditional classifiers
are designed in a direct way by employing supervised information
to determine their decision functions. Such classifiers usually
provide only class labels for new samples, but rarely care about the
revelation of data distribution. For example, multilayered percep-
tion (MLP) [3] and support vector machines (SVM) [4,5] success-
fully utilize the class information of samples to achieve high
classification accuracies; however, they emphasize more the clas-
sification of the data than the revelation of the data distribution,
thus fail to interpret the obtained classification results well.

In contrast to these classifiers, another type of classifiers is
designed in an indirect way by incorporating structural informa-
tion into their classification schemes. Since clustering analysis is
appropriate for exploring the data distribution [1,2], these

classifiers usually first perform clustering to uncover the under-
lying structure in data, and then design classification rules based
on the obtained structural information. In this way, these classi-
fiers fuse the advantages of both clustering learning and classifi-
cation learning together to some extent. On the other hand, clus-
tering methods can be roughly categorized into unsupervised ones
and supervised ones, depending on whether using class labels
or not.

1.1. Clustering algorithm background

Radial basis function neural network (RBFNN) [6] is a classical
algorithm belonging to the first category, i.e., unsupervised-
clustering plus classifier-design. To determine the parameters of
the hidden layer in RBFNN, training samples are clustered in an
unsupervised way by using c-means or FCM [7]. Then, the con-
nection weights between the hidden and output layers are opti-
mized by minimizing the mean squared error (MSE) criterion
between the target and actual outputs. Here, clustering makes
RBFNN yield good generalization [3], but its function is just to help
determine the parameters of the neural network, rather than
explore the underlying structure of the input space. In fact, RBFNN
cannot really inherit the merits of both clustering learning and
classification learning as shown below.

Recently, some fuzzy relation based methods are proposed to
bridge clustering and classification [8,9], which also belong to the
first category. Setnes et al. proposed relational classifier trained by
fuzzy clustering (FRC) to represent a transparent alternative to
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conventional black-box techniques such as neural networks. To
enhance FRC's robustness by replacing FCM and hard class labels
with KFCM [10,11] and soft labels, respectively. The training of
both algorithms includes two steps. First, unsupervised clustering
is performed on training samples to discover the natural structure
in data. Then, a relation matrix R between the obtained clusters
and given class labels is established to reflect the logical rela-
tionship between clusters and classes. Here this matrix R plays a
role of a connection weight matrix as in RBFNN. However, such
relationship in both FRC and RFRC is directly constructed by the
logical composite operator rather than by optimizing some
defined criterion function. As a result, the clustering and classifi-
cation results cannot be simultaneously optimal. In addition, the
entries in the relation matrix R lack the statistical characteristic,
and thus fail to indicate the relative reliability of the obtained
relationship. Moreover, it is difficult to optimize these entries by
defining an objective function due to in the differentiability of the
composite operators.

It is worth noting that all the above algorithms have a common
point: sequentially optimizing the clustering and classification
objective functions respectively. That is, the clustering learning
obtains a description of the underlying data distribution, and then
the classification learning uses the obtained information to train
the classification rules. In these algorithms, although the cluster-
ing learning and classification learning separately optimize their
own criteria, such kind of sequential learning manner cannot
always guarantee simultaneous optimality for both clustering and
classification learning. In fact, the clustering learning here just aids
the classification learning and does not benefit from the classifi-
cation learning.

1.2. Genetic algorithm background

Over the last decade, GA have been extensively used as search
and optimization tools in various problem domains, including
sciences, commerce, and engineering. The primary reasons for
their success are their broad applicability, ease of use, and global
perspective [12].

The concept of a genetic algorithm was first conceived by John
Holland of the University of Michigan, Ann Arbor. Thereafter, he
and his students have contributed much to the development of the
field. Most of the initial research works can be found in several
conference proceedings. However, now there exist several text
books on GAs [12–16]. A more comprehensive description of GAs
along with other evolutionary algorithms can be found in the
recently compiled “Handbook on Evolutionary Computation”
published by Oxford University Press [17]. Two journals entitled
“Evolutionary Computation” published by MIT Press and IEEE are
now dedicated to promote the research in the field. Besides, most
GAs applications can also be found in domain-specific journals.

Meng et al. [18] studied the encoding techniques of GA since GA
encoding has significant influence on GA systems performance
when solving problems with high complexity. A sufficient con-
vergence condition on genetic encoding in Genetic Algorithms has
been presented, such as Bias Code, Uniform Code, Trisector Code
and Symmetric Code. Angelov [19] proposed a new approach for
on-line design of fuzzy controllers of Takagi–Sugeno type (TS
type); fuzzy rules are generated based on data collected during the
process of control using newly introduced technique for on-line
identification of TS type fuzzy models. Output of the plant under
control and the respective control signal has been memorized and
stored in on-line mode, and used to train in a noniterative,
recursive way the fuzzy controller. Gacognne [20] has used the GA
to find a set of nondominated solutions in the sense of Pareto
instead of a unique solution with a unique fitness function. Gac-
cognne first began with a small random population of points in the

space of research and setting a maximal size, then he used a family
of genetic operators in relation with each specific problem, and he
made a control on that family to give reinforcement for the best of
them. Magdalena and Monasterio [21] proposed a new way to
apply GAs to fuzzy logic controllers (FLC), and applies it to a FLC
designed to control the Synthesis of biped walk of a simulated. A
new approach adapted to systems with a larger number of vari-
ables has been proposed and tested over a FLC controlling a
complex problem the locomotion of a simulated six links biped
robot. Lee and Takagi [22] proposed a method for automatically
designing complete triangular fuzzy systems using a genetic
algorithm and a penalty strategy to determine membership
function shape and position, number of fuzzy rules, and con-
sequent parameters. Experimental results demonstrated the
practicality of the method comparably to a system produced by
another method, in Lee and Takagi work they have used triangular
and trapezoidal membership functions for the fuzzy controller,
and experimental score function. Several papers have proposed
automatic design methods. Much of the work has focused on
tuning membership functions [23–25] Takagi and Hayashi [26]
used neural networks as a membership values generator and in
[27] they treated fuzzy systems as networks and used back pro-
pagation techniques to adjust membership functions. Alata and
Demirli [28] investigated the influence of the shape, the dis-
tribution of the membership functions and the order of the func-
tional consequent of Takagi–Sugeno controller on the interpola-
tion function of the fuzzy system. Number of inputs, conjunction
operator, the order of consequent, and complementary or non-
complementary triangular membership functions will determine
the shape of the output.

2. Clustering algorithm

FCM algorithm is a clustering algorithm based on partitioning,
which makes the idea to be divided into the biggest similarity
between objects on the same cluster, while the minimum simi-
larity between different clusters. Since the introduction of the
fuzzy set theory in 1965 by Zadeh, it has been applied in a variety
of fields. FCM is an improvement of common c-means algorithm
for data classification that is rigid, while the FCM is a flexible fuzzy
partition.

2.1. Fuzzy clustering algorithm

The fuzzy clusters are generated by the partition of training
samples in accordance with the membership functions matrix
U¼ ½μki�. νi is the degree of membership of xk in the cluster i, xk is
the kth of d-dimensional measured data. The standard FCM uses
the Euclidean distance as a cost function to be minimized and
expressed as the following equation:

JFCMðU;VÞ ¼
Xc
k ¼ 1

Xn
i ¼ 1

μm
ki jxk�νi j 2 ð1Þ

where j � j is any norm expressing the similarity between any
measured data and the center.

As the FCM objective function is minimized, each pixel is
assigned a high membership in a class whose center is close to the
intensity of the pixel. A low membership is given when the pixel
intensity is far from the class centroid. The FCM is minimized
when the first derivatives of Eq. (1) with respect to μki and νi are
zero. The final classes and their centers are computed iteratively
through these two necessary conditions. In the end, a hard clas-
sification is reached by assigning each pixel solely to the class with
the highest membership value.
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