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a b s t r a c t

In this paper, we propose a new constrained clustering algorithm, named Constrained Community
Clustering (C3). It can utilize both must-link and cannot-link constraints that specify the pairs of data that
belong to the same or different clusters. Instead of directly enforcing the pairwise constraints on the
constrained data, C3 first builds constrained communities around each constrained data, and then exert
pairwise constraints on the constrained communities. Therefore, C3 can not only extend the influence of
pairwise constraints to the surrounding unconstrained data, but also uncover the underlying sub-
structures of the clusters. The promising experimental results on the real-world text documents,
handwritten digits, alphabetic characters, face recognition, and community discovery illustrate the
effectiveness of our method.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Clustering used to be defined as an unsupervised learning
problem, whose goal is to organize a collection of data into dif-
ferent groups, so that the within-group data is more densely
connected than those distributed in different groups. This situa-
tion lasts until cluster seeds [1] and pairwise constraints [2] are
introduced to guide the clustering process. We call the clustering
with pairwise constraints as constrained clustering. Compared
with traditional unsupervised clustering, where multiple reason-
able partitions can be applied to one problem, constrained clus-
tering is equipped with more prior knowledge and hence directed
to a more specific partition. By far, constrained clustering has been
applied to a variety of applications such as discovery of disease
trajectories [3], analysis of gene expression data [4], and privacy-
preserving data publishing [5].

Constrained clustering typically deals with two types of pair-
wise constraints, namely must-links and cannot-links. Must-link
constraints specify the pairs of data that belong to the same
cluster, while cannot-link constraints specify the pairs of data that
belong to different clusters. With must-link and/or cannot-link
constraints, constrained clustering aims to find out the user-
desired clustering result indicated in an implicit way.

There have been various constrained clustering algorithms
proposed so far. A major group of constrained clustering algo-
rithms are derived from unsupervised methods, including k-

means [2], all-pairs shortest path [6], Gaussian mixtures models
[7], Gaussian process [3,8] and Spectral clustering [9–12]. Among
them, Wagstaff et al. [2] proposed the first constrained clustering
algorithm that adapts the traditional k-means algorithm to find a
solution that satisfy all the pairwise constraints. One year later,
Klein et al. [6] interpreted qualitative pairwise constraints as
quantitative distances (or proximities) to infer all-pairs shortest
path. Generative models, which are widely used in unsupervised
clustering, are also adopted in constrained clustering algorithms.
Shental et al. [7] incorporated pairwise constraints into the density
estimation of Gaussian mixture models, while Ross et al. [3] used
pairwise constraints to learn a variational Dirichlet process mix-
ture of Gaussian processes. In recent days, Calandriello et al. [13]
extended the unsupervised information-maximization clustering
algorithm to deal with constrained clustering, but the proposed
algorithm cannot appropriately deal with cannot-link constraints
in multi-class problem. With the popularity of spectral method
[14], constrained spectral clustering now becomes an emerging
trend in the development of constrained clustering algorithms.
Kamvar et al. [9] proposed the first constrained spectral clustering
algorithm that applies spectral clustering to the modified simi-
larity matrix, where the must-link similarities are set 1 and
cannot-link similarities are set 0. Kulis et al. [11] adopted the
similar paradigm as [9], but only employed another similarity
modification strategy, i.e. added a reward to must-link similarities
and subtracted a penalty to cannot-link similarities. The dis-
advantage of these two works lies in that they confine the influ-
ence of pairwise constraints to the constrained data. To overcome
the shortcoming, efforts have been made to integrate the
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satisfaction of pairwise constraints into the optimization target of
constrained spectral clustering, so that sparse pairwise constraints
can be propagated to the unlabeled data. Yu et al. [15] defined a
constrained normalized cut criterion that combines clustering
smoothness with fairness on labeled data. Rangapuram et al. [12]
provided a tight relaxation of constrained normalized cut and
guarantee to satisfy all the pairwise constraints. However, Yu et al.
[15] failed to deal with cannot-link constraints, while Rangapuram
et al. [12] failed to handle multi-class problems.

Another group of constrained clustering algorithms incorpo-
rates metric learning to transform the clustering data into a new
feature space, so that the must-linked data are mapped nearby
while the cannot-linked data are mapped faraway [16–19]. Global
metric learning is usually preferred for the simplicity of its model.
Xing et al. [16] learned a global Mahalanobis metric to spread the
constraint influence to all the data points uniformly. Instead of
performing metric learning in the original feature space [16], Li
et al. [20] learned a global metric in the low-dimensional spectral
space, while Anand et al. [21] learned a global metric in the high-
dimensional kernel space for constrained clustering. In order to
handle high-dimensional data efficiently, Wu et al. [22] proposed
to learn a nonlinear Bregman distance function with pairwise
constraints. Besides, Alzate et al. [23] learned a modified kernel
matrix by incorporating hard or soft pairwise constraints into
spectral clustering with natural out-of-sample extension. How-
ever, in the real-world applications, a dataset rarely has only one
uniform metric. To make up for this deficiency, Bilenko et al. [24]
learned a local metric for each cluster to keep the constraint
influence within the related clusters. Similarly, Wang et al. [25]
chose a fixed radius to determine the neighborhood of pairwise
constraints before local metric learning. However, none of the
prior assumptions about the scope of metric, no matter global,
local or a circle with fixed radius, can universally hold true for all
the datasets. A more appropriate way is to adaptively determine
the influence range of each pairwise constraint.

In this paper, we propose a Constrained Community Clustering
(C3) algorithm, which can propagate the influence of pairwise
constraints to the unconstrained data in proportion to the affi-
nities among constrained and unconstrained data. To this end, we
extend a pairwise constraint to the relationship between two
constrained communities, where each constrained community is
defined as a group of data under the influence of a constrained
data. The advantage of introducing constrained community lies in
that it not only adaptively determines the influence range of each
pairwise constraint, but also reveals the underlying sub-structures
of the clusters. Besides, similar to the communities in social net-
work, constrained communities allow overlapping. We enforce
every pairwise constraint on the constrained communities, so that
the constraint influence can be propagated to the unconstrained
data. At last, the expanded influence of different pairwise con-
straints are integrated into a cluster indicating matrix for cluster
assignment. Sufficient experiments with comprehensive evalua-
tion criteria demonstrate the superiority of C3 over other related
constrained clustering algorithms on text documents, handwritten
digits, alphabetic characters, face recognition, and community
discovery applications. Besides, the impact of the parameters on
the clustering performance of C3 is also analysed.

It is worthwhile to highlight several aspects of the proposed
approach as follows.

� C3 determines the range of each constrained community by
taking a balance between the spreading community indicating
matrix and the initial community assignment.

� We propose an exponential adaptation method to adapt the
pairwise affinity matrix and the community affinity matrix,
which are both symmetrically normalized, to be consistent with

the pairwise constraints. It ensures that, after the modification,
the elements in the adapted affinity matrices are still within the
range of [0,1].

� The time complexity of C3 is smaller than traditional graph-
based methods. The time complexity of C3 is O(n) when given
the precomputed affinity matrix, while the traditional methods
costs Oðn3Þ for the eigenvalue decomposition of the full affinity
matrix.

� The space complexity of C3 is smaller than traditional graph-
based methods. The storage requirement of C3 is O(kn), where k
is the size of neighborhood (or the sparsity of affinity matrix)
and n is the number of data instances, while the traditional
methods require Oðn2Þ to store the full affinity matrix.

The remainder of this paper is organized as follows. Section 2
provides preliminaries about transductive learning and its rela-
tionship with C3 algorithm. Section 3 describes the detailed pro-
cedures of C3. Section 4 evaluates the clustering performance of C3

in comparison with other state-of-the-art methods, and Section 5
concludes the whole paper.

2. Preliminaries

Transductive learning [26] refers to the following problem:
given a dataset D¼ ðX l;Yl;XuÞ, where X l ¼ fx1;…; xlg is the labeled
data subset, Y l ¼ fy1;…; ylg is the label set of X l, yiAfc1;…; cpg, p is
the number of classes, Xu ¼ fxlþ1;…; xng is the unlabeled data
subset, the goal is to predict the label set of Xu, denoted as Yu.
Transductive learning is related with our C3 algorithm in building
constrained communities.

Let A¼ ðaijÞn�n denote the affinity matrix of X ¼X l [ Xu,

aij ¼ exp � Jxi�xj J2

2σ2

 !
ð1Þ

S denote the normalized affinity matrix,

S¼D�1=2AD�1=2 ð2Þ
where D¼ ðdiiÞn�n is the diagonal degree matrix with dii ¼

P
jaij.

The estimated labels of both labeled and unlabeled data are

recorded in a label indicating matrix Ŷ ¼ ½Ŷ T
l Ŷ

T
u�T , where Ŷ l is the

l� c submatrix indicating the known labels of Yl, Ŷ u is the ðn� lÞ �
c submatrix indicating the predicted labels of Yu.

Among various transductive learning algorithms, Zhou et al.
[27] spread the known labels via keeping both global and local
consistency. In their algorithm, the computation of Ŷ is performed
in an iterative manner:

Ŷ
tþ1 ¼ αSŶ

tþð1�αÞŶ 0 ð3Þ

where Ŷ
0
is the initial value of Ŷ , αAð0;1� is a tradeoff parameter

between the spreading of Ŷ
t
and Ŷ

0
. It has been proved [27] that

Eq. (3) converges to a simple solution:

Ŷ
1 ¼ ð1�αÞðI�αSÞ�1Ŷ

0 ð4Þ
The submatrix of Ŷ

1
u is used to assign the unlabeled data with the

most probable labels, yi ¼ arg maxjŷij, 8 xiAXu.

3. Constrained Community Clustering

Constrained clustering can be formulated as follows. Given an
unlabeled dataset X and a pairwise constraint set C¼ C ¼ [ Ca ,
C ¼ is the must-link constraint subset, Ca is the cannot-link
constraint subset. The must-link constraint ðxi; xj; ¼ ÞAC ¼

X. Xu, P. He / Neurocomputing 188 (2016) 239–252240



Download English Version:

https://daneshyari.com/en/article/411570

Download Persian Version:

https://daneshyari.com/article/411570

Daneshyari.com

https://daneshyari.com/en/article/411570
https://daneshyari.com/article/411570
https://daneshyari.com

