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A non-negative sparse semi-supervised dimensionality reduction algorithm is proposed for hyperspec-
tral data by making adequate use of a few labeled samples and a large number of unlabeled samples. The
objective function of the proposed algorithm consists of two terms: (1) a discriminant item is designed to
analyze a few labeled samples from the global viewpoint, which can assess the separability between
surface objects; (2) a regularization term is used to build a non-negative sparse representation graph
based on the unlabeled samples, which can adaptively find an adjacency graph for each sample and then
find valuable samples with huge information volume from the original hyperspectral data. Based on the
objective function and the maximum margin criterion, a dimensionality reduction algorithm, the non-
negative sparse semi-supervised maximum margin algorithm, is proposed. Experimental results on the
ROSIS University and AVIRIS 92AV3C hyperspectral data sets show that the proposed algorithm can
effectively utilize the unlabeled samples to achieve higher overall classification accuracy and Kappa
coefficient when compared with some representative supervised, unsupervised and semi-supervised

Regularization term

dimensionality reduction algorithms.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Despite the fact of being a fast growing research area, hyper-
spectral data analysis still faces many challenges, including the
large number of measured wavelength bands, huge data size, data
uncertainty, small samples, curse of dimensionality, and high data
redundancy due to strong correlations between bands [1,2]. Such
concerns directly affect the accuracy and speed of hyperspectral
data classification. As a result, it is difficult to apply traditional
classification methods directly for hyperspectral data classifica-
tion. Therefore, to balance between efficiency, accuracy and
adaptability, dimensionality reduction is generally required for
classification of hyperspectral data by band selection [3] or band
extraction [4,5]. Band selection is to select, directly from the ori-
ginal band space, some bands for subsequent data processing. In
recent years, several evolutionary computation methods have
been successively applied for dimensionality reduction of hyper-
spectral data [6]. However, since band selection is notably affected
by the specific search method and decision criterion and naturally
leads to a huge loss of information regardless of the methods.
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Band extraction is generally preferred for dimensionality reduc-
tion of hyperspectral data.

With efficient band extraction methods, the original hyper-
spectral data is mapped or transferred into a low-dimensional
subspace (while it still retains certain necessary features of the
original data) to address the curse-of-dimensionality concern so
that subsequent processing tasks such as classification and clus-
tering can be performed more computationally efficient and
accurate [7]. Depending on the availability of label information of
the samples, dimensionality reduction (DR) algorithms for hyper-
spectral data can be divided into different categories. In supervised
learning, to obtain high classification accuracy, DR algorithms look
for relevant bands with important contributions to classification
by only using labeled samples [8]. However, in many practical
applications, only a few labeled samples are available, making it
extremely difficult to discriminate and eliminate redundant,
unrelated bands from the original high-dimensional data. With the
advanced development of data acquisition technologies, it is easy
to acquire a large number of unlabeled samples, but obtaining
manually-labeled samples is time-consuming and expensive [9].
Under such situations, unsupervised DR algorithms can be
employed to extract effective bands by exploring hidden structures
in the brand features of unlabeled samples, without requiring any
prior label knowledge [10,11]. As a practical trade-off between
supervised and unsupervised dimensionality reduction, some
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researchers proposed semi-supervised DR algorithms that can
simultaneously process both labeled and unlabeled samples [12].

In recent years, semi-supervised DR algorithm has been widely
applied in face recognition, text classification and so on. For
instance, Cai, et al. [13] extended the linear discriminant analysis
(LDA) [14] algorithm, proposed the semi-supervised discriminant
analysis (SDA) and successfully applied it to face recognition with
1-labeled sample. A popular design concept to extend unsu-
pervised and supervised DR algorithms is to use the manifold
regularization method, e.g., semi-supervised maximum margin
criterion (SSMMC) and semi-supervised LDA (SSLDA) proposed by
Song et al. [15] based on MMC and LDA respectively [16], subspace
semi-supervised locality preserving (SSLPP) and subspace semi-
supervised boundary Fisher analysis proposed by Yang et al. [17].
Such semi-supervised DR algorithms can all be interpreted within
one general framework, i.e., using the Graph Laplacian method as
the regularization term [17]. Such graph-based semi-supervised
DR algorithms have been successfully applied to areas such as face
recognition, but there are still several associated concerns:
(1) They all assume the basis of manifold structure, meaning it is
necessary to have adequate samples for representing the dis-
tribution of samples [18]. (2) As Zhu [19] pointed out, most of such
algorithms as SDA and SSLPP build adjacency graphs using the k
nearest neighborhood (KNN) method, but the nearest neighbor-
hood criterion generally cannot acquire adequate discriminant
information. (3) Parameters in KNN or sample-dependence
neighborhood need to be heuristically pre-determined and all
sampling points use the neighborhood number of a fixed sized or
fixed neighborhood range. The distribution of real samples is
basically ignored, and parameter selection remains a challenge. To
address such concerns, Qiao et al. [20] built the adjacency graph
using sparsity-preserving projection instead of the conventional
Graph Laplacian method and proposed the sparsity-preserving
discriminant analysis (SPDA). Wright et al. [21] showed that the
sparse representation classification criterion is superior to the
nearest neighborhood criterion, especially in processing high-
dimensional data. However, [21] provides sparse representation
only for the regularization term in the semi-supervised DR (i.e.,
building the sparse adjacency graph only for unlabeled samples),
but ignores the discriminant term (i.e., sparse structure of labeled
samples), while the intra-class scatter matrix and inter-class
scatter matrix constructed by applying LDA directly are not real
sparse representation algorithms. Gui et al. [22]| proposed the
discriminant sparse neighborhood preserving embedding (DSNPE)
and showed that the classification performance of the sparse
representation algorithm for labeled samples is much better than
that of LDA. These graph-based algorithms may also have a
negative weight in the process of graph-building. Wong proposed
non-negative sparseness preserving embedding (NSPE) [23],
pointing out that a negative weight fails to rationally carry out the
information transfer between samples.

By jointly addressing the above sparse representation and non-
negative weight concerns, in this paper, we propose a DR algo-
rithm with reference to MMC, a non-negative sparse semi-
supervised maximum margin criterion (NSMMC) algorithm, and
we apply it for hyperspectral data. The objective function of the
proposed NS>MMC consists of two terms: a discriminant term and
a regularization term. By making adequate use of a few labeled
samples, the discriminant term constructs a separability model
between different surface objects. Using the block non-negative
sparse representation, the regularization term finds the samples
with the discriminative capacity from the unlabeled samples and
effectively improves the DR effect of the algorithm when com-
bined with the separability model of the discriminant term.

In the remainder of this paper, Section 2 describes the pro-
posed non-negative sparse semi-supervised DR algorithm. Section

3 demonstrates the performances of the proposed algorithm on
two real hyperspectral data sets. Section 4 concludes the paper.

2. Non-negative sparse semi-supervised dimensionality
reduction algorithm

2.1. Problem formulation

In the semi-supervised problem, we have the high-dimensional
hyperspectral data set with unknown distribution, Oy, =[X,Y],
where only some samples are labeled. We assume that the first [
samples are labeled, while the remaining u samples are unlabeled,
i.e, the high-dimensional sample set is X=(X;,Xy), where
Xp=(x1,X2, %), Xu=i41,X12,X4y) and X eR™ is a m-
dimensional vector. The label set is Y=Y, = (¥1,¥2, m,y,)T where
y;={1,-,¢c,--,C}. The semi-supervised DR algorithm aims to find
one projection matrix W =Wy, Ws, -, wy) e R™%d < <m), by
using both labeled and unlabeled samples, so that

z=WTxeRd (1)

where z is a low-dimensional representation of the original high-
dimensional hyperspectral data x.

2.2. Discriminant term

Unlike SDA based on the LDA discriminant term and semi-
supervised DR algorithms based on the pairwise constrains dis-
criminant term [24], the discriminant term here is based on non-
negative sparse representation. The purpose of non-negative
sparse representation is to use the minimum number of ele-
ments (atoms) in the over-complete dictionary X| = [X1,X3, -+, X)]
e R™! m <1 to represent hyperspectral data x;:

min o
st.x=Xh; h;>0 )]

where | h;||o represents the lp-norm of h; (i.e., the number of non-zero
elements in h;), withh; = [hyy, -, hii_1,0, hiiy 1, hy]" R, and hy
represents the contribution of the jth sample x; to reconstruct the
sample x;. Because x; should be eliminated from X, the ith element in
h; is set to be O (i.e.x; = hj; X +---+hj; _1X_1+hii 1% 1+ +hyx)).

Eq. (2) is a NP-hard non-convex combinatorial optimization
problem. Under the condition that the solutions are adequately
sparse, the solution of the Iy minimization problem is approximate
or equal to the solution of the I; minimization problem [25]. The [;
minimization problem can be solved efficiently through LASSO
[26] or Elastic Net [27].

min - {|h];
s.t. xi:thi; 1 =1T'hi; h; >0; yi=c¢C 3)

where 1 eR" is the all-1 vector and lc is the number of samples
labeled as class c. Non-negative GLS (Generalized Least Squares) is
used to solve Eq. (3) for obtaining the reconstruction error [27]:

minE(H®) = min|| X - X;HC[|3+ |
st.hy>0,1=1"h;; y;=c @)

where y is the non-negative coefficient for balancing sparseness
and reconstruction error. According to Eq. (4), we can compute the
optimal non-negative sparse reconstruction weight vector h; € R
for each hyperspectral data x;i n class ¢, and thenthediscriminant
non-negative sparse reconstruction weight matrix for class
CisH = [ﬁ,} . Thus, the discriminant non-negative sparse

reconstructionrweight matrix Hp of the hyper spectral data can be
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