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a b s t r a c t

Magnetic Resonance Fingerprinting (MRF) is a novel technique that simultaneously estimates multiple
tissue-related parameters, such as the longitudinal relaxation time T1, the transverse relaxation time T2,
off resonance frequency B0 and proton density, from a scanned object in just tens of seconds. However,
the MRF method suffers from aliasing artifacts because it significantly undersamples the k-space data. In
this work, we propose a compressed sensing (CS) framework for simultaneously estimating multiple
tissue-related parameters based on the MRF method. It is more robust to low sampling ratio and is
therefore more efficient in estimating MR parameters for all voxels of an object. Furthermore, the MRF
method requires identifying the nearest atoms of the query fingerprints from the MR-signal-evolution
dictionary with the L2 distance. However, we observed that the L2 distance is not always a proper metric
to measure the similarities between MR Fingerprints. Adaptively learning a distance metric from the
undersampled training data can significantly improve the matching accuracy of the query fingerprints.
Numerical results on extensive simulated cases show that our method substantially outperforms state-
of-the-art methods in terms of accuracy of parameter estimation.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Quantitative multiparametric acquisition in magnetic resonance
imaging has long been the goal of research because it provides means
of evaluating pathology using absolute tissue characteristics rather
than contrast-based approaches [1]. It involves quantification of
longitudinal relaxation time T1, transverse relaxation time T2, off
resonance frequency B0, proton density and other relevant parameters
at each voxel of the scanned object. In most previous work, T1 and T2
are determined in separate scans [2–7]. Some recent methods can
simultaneously estimate several parameters [8–10] but are restricted
to only a limited set of parameters.

The Magnetic Resonance Fingerprinting (MRF) method recently
proposed by [11] has the potential to quantitatively examine more
than 4 magnetic resonance parameters simultaneously. The MRF
method is based on the Inversion recovery-balanced SSFP (IR-bSSFP)
[12] sequences. It has been reported that MRF outperforms the widely
used DESPOT1 and DESPOT2 [7] methods for T1 and T2 estimation. It
can also be used to directly estimate the combination proportions of

different types of tissues at every single voxel. This may lead to new
diagnostic methodologies.

The key idea of the MRF method is similar to matching a person's
fingerprint to a database: once a match is made, additional informa-
tion about the person can be obtained simultaneously. The MRF
method generates unique signal evolutions by scanning a slice of the
object for T times with randomized system-related parameters. After
applying the inverse Fourier transformation, the T-dimensional vector
at every voxel location represents its characteristic signal evolution
and is called its Magnetic Resonance Fingerprint [11]. Different tissues
(such as white matter, gray matter, and cerebrospinal fluid) are
assumed to have their own unique magnetic resonance fingerprints.
These fingerprints can be easily distinguished by matching them to a
predefined dictionary, which is generated using the well-known Bloch
equation. The dictionary can be seen as a natural discretization of the
Bloch response. It contains fingerprints of all foreseeable combinations
of materials and system-related parameters. Each fingerprint corre-
sponds to a vector of parameters to be estimated (such as T1, T2, B0 and
proton density). A nearest-neighbor based method is used to select
the dictionary atom that best represents the observed fingerprint of a
query voxel. All the magnetic resonance parameters corresponding to
this dictionary atom can then be retrieved simultaneously. In this way,
a set of MR parameters are estimated at every voxel location. The
same procedure can be repeated to obtain MR parameter maps of all
slices of the scanned object.
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However, the MRF method still suffers from two problems:
(1) in order to balance the accuracy and the scanning time, the
MRF method significantly undersamples data in the k-space. Thus
the reconstructed images exhibit extreme aliasing artifacts, which
propagate to the estimated MR parameter maps. (2) The MRF
method selects the best atom whose parameters are closest to the
query fingerprint with the L2 distance. However, we observed that
the L2 distance is not always appropriate for retrieving the correct
fingerprint from the dictionary.

Recent developments in compressed sensing (CS) theory [13,14]
show that it is possible to reconstruct signals from highly under-
sampled data, which provides plausible solutions for the first problem.
So far, CS has been successfully applied to various domains in medical
imaging, e.g., MR Imaging [15,16], shape modeling [17–19] and optical
coherence tomography denoising [20].

Methods in [15,21] performed optimization with L1 and TV
norm regularizations by the Conjugate Gradient decent algorithm.
These two methods could effectively reconstruct MR images with
a sampling ratio around 20 %. Other methods like Lp quasi-norm
ðpo1Þ regularized optimization [22,23] tolerate lower compres-
sion ratios, but these non-convex algorithms do not always
recover global optima and are relatively slower. Ref. [24] adap-
tively learned the sparsifying transform (dictionary) and thereby
favoring higher sparsity and consequently higher sampling ratios.
Their reconstructions can achieve higher undersampling ratios
with tolerable errors. However, all these algorithms lead to alias-
ing artifacts if they are applied to the MRF method with a sampling
ratio of only around 3%.

To our knowledge, two previous methods [25,26] were proposed
to integrate a CS algorithm into the MRF framework. Ref. [25] pro-
posed to apply CS to reconstruct the image at each sampling time. But
the sampling ratio cannot be less than 70%. Ref. [26] adopted a CS
solution based on the iterative projection algorithm by [27] which
imposes consistency with the Bloch response manifold. At each
iteration, every voxel would be replaced by its nearest atom in the
dictionary. Then the whole image at each sampling time was updated
by the Projected Landweber Algorithm (PLA). This method is called
BLIP (BLoch response recovery via Iterated Projection), and is efficient
and effective in removing the aliasing artifacts.

Moreover, all the previous works [11,25,26] used inner-product for
calculating the similarities between the query fingerprint and the
dictionary atoms, which is equivalent to using the L2 distance as the
distance metric. However, we observe that if the distance metric is
learned in a supervised manner, then the performance of the nearest-
neighbor based dictionary matching can be significantly improved.

In this work, we propose a compressed sensing framework for
simultaneously estimating multiple MR parameter maps with dis-
tance metric learning. Instead of treating each voxel individually, we
assume that each image is sparse in some transform domain. The
problem of estimating MR parameter maps is then formulated as a
compressed sensing problem, where we make use of the spatial
information of the image sequence. For each voxel, its fingerprint is
then matched to its nearest atom in a predefined dictionary with a
learned distance metric. Such a learned metric is more accurate in MR
fingerprint matching. Furthermore, a novel sampling strategy based
on Cartesian sampling is proposed. Our strategy makes the aliasing
noise as incoherent as possible with the fingerprint itself, thus making
it easier to be removed. Extensive experiments were conducted on
simulated MR images to evaluate the performance of the proposed
method. Numerical results show that it outperforms state-of-the-art
methods in estimating multi-parametric MR maps of scanned objects.

In real scenarios, the ground truth MR parameter maps for dis-
tance metric learning can be obtained by applying standard MR
imaging approaches to volunteers or phantoms. The learned metric
can then be used for future scans under the same experimental
setting.

Our main contribution is three-fold: (1) we propose a com-
pressed sensing framework based on MRF that is more robust to
estimate multiple MR parameter maps of a scanned object at low
sampling ratios. It makes use of the spatial information of the image
sequence and is therefore accurate in estimating the MR parameters
when the sampling ratio is very low. (2) We improve the accuracy of
the dictionary matching process by replacing the L2 distance with a
learned distance metric. The proposed metric can be learned in a
supervised manner. (3) In order to make the undersampling errors
and the MR fingerprints as incoherent as possible, we design a
novel sampling strategy with which the sampling mask at time t is
conditional on the one at time t�1. It generates aliasing noise that
is easier to be removed by dictionary matching.

2. Methodology

In this work, we propose a novel framework to simultaneously
estimate multiple MR parameters for every voxel of a scanned
object based on the MRF method. In Section 2.1, the MRF method
and notation is introduced. In Section 2.2, we introduce a com-
pressed sensing framework for MRF to reduce errors. In Section 2.3,
we present adaptively learning a distance metric for dictionary
matching. A novel sampling strategy is proposed in Section 2.4
which further removes the aliasing noise.

2.1. Magnetic Resonance Fingerprinting (MRF)

The key underlying assumption in MRF is that different mate-
rials or tissues have their own unique signal evolutions or finger-
prints. The magnetization at a given voxel location at time t
depends on its magnetic resonance parameters and the system-
related parameters, including the flip angle FA, repetition time TR
and others, at time t�1. For illustration purposes, we explain the
estimation of MR parameter maps of only a single slice in Section 2.

Let XACN�T denote multiple scans of one slice of the object of
interest, where N is the total number of voxels in the slice and T is
the sequence length. Let Xi

tAC denote the ith voxel of the scanned
slice at time t, XiAC1�T denote the signal evolution or fingerprint
at voxel i at all times, and XtACN�1 denote the scanned image of
the slice at time t.

Given the initial magnetization, the signal evolution or finger-
print at voxel i can be written as

Xi ¼ ρiBðθi; FA; TRÞ; ð1Þ
where ρi is the proton density – one of the magnetic resonance
parameters to be estimated, θi is the collection of other magnetic
resonance parameters at voxel i, and B is the Bloch equation
dynamics.

Since the possible range of θi of the object is known in advance, we
densely sample each MR parameter and use the Bloch equation to
create the dictionary DACK�T , where K is the number of dictionary
atoms. Each dictionary atom is normalized so that JDk J2 ¼ 1, for
k¼ 1;2;…;K . The same set of system-related parameters FA and TR is
used for both creating the dictionary and obtaining the scanning data
X. Given a query fingerprint, it is matched to its nearest atom in the
predefined dictionary with the L2 distance. The index of the nearest
dictionary atom for the fingerprint Xi is denoted as ~ki, and is obtained
as

~ki ¼ argmin
k

JXi=‖Xi‖22�Dk J2 ð2Þ

~ki ¼ argmax
k

real〈Xi=‖Xi‖22;D
k〉

n o
; ð3Þ

where real is the operation to extract the real part of a complex
number and 〈�; �〉 is the inner product operation. The corresponding
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