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a b s t r a c t

This work studies the problem of finite-time stochastic boundedness of discrete-time Markovian jump
neural networks with boundary transition probabilities and randomly varying nonlinearities. The partly
unknown and uncertain transition probabilities (TPs) are included in the paper, and more general
nonlinearities are introduced with both upper and lower bounds due to the nature of its probability
information. By employing the free-weighting matrix technique, finite-time stability theory and
boundary incomplete TPs, the solvability sufficient conditions of finite-time stochastic boundedness are
given. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed
approach.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

As a special class of nonlinear dynamical systems, neural net-
works have been received much attention because of its applica-
tions in a variety of fields, including pattern recognition, signal
processing and other areas. The stability analysis of neural net-
works is required due to the existence of time delays and other
disturbances, which cause the oscillations and instability. There-
fore, the stability problem of neural networks with time delay [1–
3] and disturbance [4,5] has been widely studied by many
researchers. Furthermore, the finite modes of neural networks
always switching from one to another with respect to varying
time, which can be considered into the theoretical framework of
Markovian jump systems (MJSs). In the past decades, particular
research interests have been devoted to Markovian jump neural
networks with time delay for their extensive applications [6–9].

On another research forefront, the jump rules of each modes
are often determined by transition probabilities (TPs) in the MJSs,
which are always assumed to be completely known. However, this

situation is actually questionable and probably hard to satisfied. In
the Markov chains, both packet dropout and variation of time
delay are random and vague at different, which leads to TPs matrix
is costly to get. Therefore, the focus has been switched to verify the
stability of MJSs with partially unknown TPs by some researchers
[10–18], such as in [10], a very general system, namely a traditional
Markovian jump nonlinear quadratic system with both the com-
pletely known transition probabilities and arbitrary switching, is
considered. In [12], a relaxation scheme is proposed for a class of
discrete-time singular Markovian jump systems with time-varying
delays and incomplete (i.e., unknown and uncertain) transition
probabilities. In [15], with definition of finite-time stochastic sta-
bility for discrete-time MJSs and the relationship of TPs

P
jARKπij

¼ 1�PjAR0
UK
πij are given, the problems of finite-time stochastic

stability and stabilization with partly unknown transition prob-
abilities for linear discrete-time Markovian jump systems (MJP)
have been discussed.

Furthermore, the nonlinearities are extensive exist in dynamic
systems which caused by environmental circumstances [19–23] and
in other engineering application [36–41]. It should be pointed out that
the nonlinear disturbances may cause random abrupt changes for its
random changes, which is said to be randomly varying nonlinearities.
However, to acquire the stability conditions, the existing results only
focus on either sector bounds or the upper bound of nonlinearity. The
inner information between lower and upper bounds is neglect, which
brings the conservativeness.
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In the practical dynamic systems, the behavior of dynamic
systems in a fixed finite-time interval, for example, the state tra-
jectories stay a given bound from the perspective of real-world
applications, which attracts our attention. Up to now, considerable
results of dynamic systems relate to finite-time stability, finite-
time stabilization and finite-time boundedness have been repor-
ted in [24–32]. In [28], the solutions to the finite-time H1 syn-
chronization problem are formulated by employing the properties
of Kronecker product combined with the Lyapunov–Krasovskii
method. In [31], finite-time state-feedback stabilization is
addressed for a class of discrete-time nonlinear systems with
conic-type nonlinearities and additive disturbances. Haddad and
L'Afflitto [32] addressed the problem of optimal nonlinear analysis
and feedback control design for finite-time partial stability and
finite-time, partial-state stabilization.

Motivated by the above discussion, the problem of finite-time
stochastic boundedness of discrete-time Markovian jump neural
networks with boundary transition probabilities and randomly
varying nonlinearities is discussed in this paper. The main con-
tribution of this paper lies first in bring the general mode transi-
tion probabilities are set, namely, partly unknown and uncertain in
the Markov chain to derive the less conservative stability condi-
tion. Markovian jump neural networks jump from one to others
have a finite number of modes. Second, more general probability
nonlinearity model with both upper and lower bounds is intro-
duced. Third, by employing the free-weighting matrix technique,
finite-time stability theory and bounded incomplete transition
probabilities, sufficient conditions are given for the solvability of
the problems, which can be tackled in form of linear matrix
inequalities (LMIs). Fourth, numerical examples are presented to
demonstrate the effectiveness of the proposed method.

2. Preliminaries

Consider the following Markovian jump neural networks with
n neurons defined on a probability space ðΩ; F;Ψ Þ:
xðkþ1Þ ¼ AðrkÞxðkÞþBðrkÞxðk�τðkÞÞþDðrkÞωðkÞþhðxðkÞ; rkÞ ð1Þ
where x(k) is the state, ωðkÞ is the external exogenous dis-
turbances, and for given NAZþ , ωðkÞ satisfies
XN
k ¼ 0

ω> ðkÞωðkÞrd; dZ0 ð2Þ

The transmission delay τðkÞ is an unknown time-varying
function that satisfies τmrτðkÞrτM , where τm and τM are pre-
scribed positive integers representing the lower and upper bounds
of the delay. rk represents a discrete-time, discrete-state Markov
chain taking values in a finite set N ¼ f1;2;…;Ng, with transition
probability matrix π ¼ ½πij�i;jAN and πijZ0 is defined as

πij ¼ Prfrkþ1 ¼ jj rk ¼ ig ð3Þ
where

PN
j ¼ 1 πij ¼ 1, and πijA ½0;1�, the Markov process transition

rate matrix π is defined by

π ¼

π11 π12 ⋯ π1N

π21 π22 ⋯ π2N

⋮ ⋮ ⋱ ⋮
πN1 πN2 ⋯ πNN

2
6664

3
7775

AðrkÞ, BðrkÞ and DðrkÞ are known real constant matrices for all
rk ¼ iAN . We denote the matrices associated with rk ¼ iAN by
AðrkÞ ¼ Ai, BðrkÞ ¼ Bi, DðrkÞ ¼Di.

It should be mentioned that transition probabilities of the
jumping process are always assumed to be some are known, some
are unknown. If Markovian jump delayed systems with four

operation modes, the transition probability matrix with four
operation modes can be represented as follows:

π ¼

π11 ? π13 ?

? ? ? π24

π31 ? π33 ?

? ? π43 π44

2
6664

3
7775;

where ? represents the completely unknown transition prob-
abilities. Therefore, the transition probability matrix can be
represented as follows:

RK ¼ fjjπij is completely known for ig
RUK ¼ fjjπpq is unknown but bounded as αijrπijrβij for ig
R0

UK ¼ fjjπij is unknown for ig

8>><
>>:

ð4Þ
To express the transition probability matrix π, the defined sets

can be denoted as N ¼RK [ RUK [ R0
UK. However, in the discrete-

time Markov process,
PN

j ¼ 1 πij ¼ 1, and πijA ½0;1�. For all jAR0
UK,

the probabilities πij is bounded as follows:

αij ¼ 0; βij ¼ 1�
X
ζARK

πiζ�
X

ζARUK

αiζ

It should be noted that, for the given i, it is not correct with πij
is completely unknown, it belongs to πij is unknown but bounded
as πijA ½αij;βij�, namely, R0

UKARUK. Then, one has

N ¼RK [ RUK; 8 iAN
For example, for any Sj, one hasX

jAN
πij ¼

X
jARK [RUK

¼
X
jARK

πijQ jþ
X

jARUK

πijQ j; 8 iAN

Furthermore, for the incomplete transition probabilities, we
denote

ΠK ¼
X
jARK

πij; ΠUK ¼ ½πij�jARUK ARg

where g represents the number of elements in RUK.
In [33], the sector bounded nonlinearities are given as

ðΨ ðνÞ�H1νÞ> ðΨ ðνÞ�H1νÞr0, in which Ψ ðνÞ is nonlinear func-
tion, Hs ðs¼ 1;2Þ are known constant matrices with trðH1ÞotrðH2Þ.
Similarly, the sector bounded nonlinearities are extended with
both state and time-delayed state vectors. In this paper, hðxðkÞ; rkÞ
is the nonlinear function with both state and time-delayed state
vectors and is given as follows:

½hðxðkÞ; iÞ�ðMimxðkÞþNimxðk�τðkÞÞÞ�> ½hðxðkÞ; iÞ�ðMiMxðkÞ
þNiMxðk�τðkÞÞÞ�r0 ð5Þ

where Mim, Nim, MiM and MiM are real matrices with compatible
dimensions. Furthermore, trðMimÞrtrðMiMÞ and trðNimÞrtrðNiMÞ.
In such case, it is said that hði; xðkÞÞA ½fMim;Nimg; fMiM ;NiMg�.

In this paper, new probability of nonlinearities is given as

κ1ðkÞ ¼
0 if hðxðkÞ; iÞA ½fMim;Nimg; fMi;Nig�
1 if hðxðkÞ; iÞA ½fMi;Nig; fMiM ;NiMg�

(

κ1ðkÞþκ2ðkÞ ¼ 1

where Mi and Ni are constant matrices with tranceðMimÞrtranceð
MiÞrtranceðMiMÞ and tranceðNimÞrtranceðNiÞrtranceðNiMÞ. κ1ðkÞ
Bernoulli distributed sequence and satisfying

Prfκ1ðkÞ ¼ 1g ¼ κ1; Prfκ1ðkÞ ¼ 0g ¼ 1�κ1
Prfκ2ðkÞ ¼ 1g ¼ 1�κ1 ¼ κ2; Prðκ2ðkÞ ¼ 0g ¼ κ1 ¼ 1�κ2:

Then, one has

h1ðxðkÞ; iÞ ¼
hðxðkÞ; iÞ; κ1ðkÞ ¼ 1
MimxðkÞþNimxðk�τðkÞÞ; κ1ðkÞ ¼ 0

(
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